
Share on your Social
Media

JavaScript Tutorial for
beginners
Published On: September 20, 2024

JavaScript Tutorial for beginners

If you want to develop dynamic and interactive web
pages, JavaScript is the best technology that eases
the execution of complicated actions. Learn the
fundamentals in this JavaScript tutorial and
kickstart your web development career.

Download JavaScript Tutorial PDF

Introduction to JavaScript

Programmers can create dynamic and interactive
websites that interest viewers and perform complex
tasks using JavaScript. In this JavaScript tutorial, we
cover the following:

Overview of JavaScript
Fundamentals of JavaScript
Functions in JavaScript
Advantages of JavaScript

Overview of JavaScript

JavaScript is cross-platform, lightweight, single-
threaded programming. This programming
language is often used to create dynamic and
interactive website elements. JavaScript is a more
flexible interpreted language since it executes code

Featured
Articles

Want to know
more about

becoming an
expert in IT?

Click Here to Get
Started

100%
Placement
Assurance

Related Courses
at SLA

JavaScript Online
Training

JavaScript Training in
OMR

JavaScript Training in
Chennai

Related Posts

»

EASY WAY TO IT JOB

Q
ui

ck
 E

nq
ui

ry

https://www.softlogicsys.in/python-full-stack-developer-course/
https://www.softlogicsys.in/python-full-stack-developer-course/
https://www.softlogicsys.in/python-full-stack-developer-course/
https://www.softlogicsys.in/python-full-stack-developer-course/
https://www.softlogicsys.in/java-full-stack-developer-course/
https://www.softlogicsys.in/java-full-stack-developer-course/
https://www.softlogicsys.in/data-science-full-stack-course/
https://www.softlogicsys.in/business-intelligence-and-data-analytics-course/
https://www.softlogicsys.in/software-testing-and-quality-assurance-course/
https://www.softlogicsys.in/mean-full-stack-developer-course/
https://www.softlogicsys.in/mern-full-stack-developer-course/
https://www.softlogicsys.in/dot-net-fullstack-course/
https://www.softlogicsys.in/aws-devops-engineer-course/
https://www.softlogicsys.in/azure-devops-training-in-chennai/
https://www.softlogicsys.in/placement-training-institute-in-chennai/
https://www.softlogicsys.in/placement-training-institute-in-chennai/
https://www.softlogicsys.in/reviews/
https://www.softlogicsys.in/placed-students-list/
https://www.softlogicsys.in/placed-students-list/
https://www.softlogicsys.in/placed-students-list/
https://www.softlogicsys.in/placed-students-list/
https://www.softlogicsys.in/placed-students-list/
https://www.softlogicsys.in/corporate-training/
https://www.softlogicsys.in/hire-with-us/
https://www.softlogicsys.in/hire-with-us/
https://www.softlogicsys.in/hire-with-us/
https://www.softlogicsys.in/hire-with-us/
https://www.softlogicsys.in/submit-your-cv/
https://www.softlogicsys.in/careers/
https://www.softlogicsys.in/careers/
https://www.softlogicsys.in/careers/
https://www.softlogicsys.in/careers/
https://www.facebook.com/sharer.php?u=https%3A%2F%2Fwww.softlogicsys.in%2Fjavascript-tutorial-for-beginners%2F&picture=&title=JavaScript%20Tutorial%20for%20beginners
https://x.com/share?text=JavaScript%20Tutorial%20for%20beginners&url=https%3A%2F%2Fwww.softlogicsys.in%2Fjavascript-tutorial-for-beginners%2F
https://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fwww.softlogicsys.in%2Fjavascript-tutorial-for-beginners%2F&title=JavaScript%20Tutorial%20for%20beginners
https://api.whatsapp.com/send?text=*JavaScript%20Tutorial%20for%20beginners*+https%3A%2F%2Fwww.softlogicsys.in%2Fjavascript-tutorial-for-beginners%2F
https://pinterest.com/pin/create/button/?url=https%3A%2F%2Fwww.softlogicsys.in%2Fjavascript-tutorial-for-beginners%2F&media=
https://t.me/share/url?url=https%3A%2F%2Fwww.softlogicsys.in%2Fjavascript-tutorial-for-beginners%2F&text=JavaScript%20Tutorial%20for%20beginners
https://www.softlogicsys.in/javascript-online-training/
https://www.softlogicsys.in/javascript-online-training/
https://www.softlogicsys.in/javascript-training-in-omr/
https://www.softlogicsys.in/javascript-training-in-omr/
https://www.softlogicsys.in/javascript-training-in-chennai/
https://www.softlogicsys.in/javascript-training-in-chennai/
https://www.softlogicsys.in/javascript-training-in-chennai/
https://www.softlogicsys.in/mern-stack-tutorial-for-web-development-aspirants/
tel:+918681884318
https://api.whatsapp.com/send/?phone=918681884318&text=Hi+I+am+looking+for+more+information+on+your+training+courses&type=phone_number

line by line.

Hello World Program in JavaScript

console.log(“Hello World!”);

“LiveScript” was the original name of JavaScript
when it was first developed. JavaScript, however,
has no connection to Java anymore as it developed
into a completely separate language with its
definition known as ECMAScript.

JavaScript Interview Questions and
Answers

Features of JavaScript

JavaScript is the only browser technology that does
all three of the following things at once:

Extensive HTML/CSS integration.
Simple tasks are completed easily.
Supported and turned on by default in all
major browsers.

Join our AngularJS course program for a bright
career in web development.

JavaScript Code Editors

JavaScript code is written by programmers using a
code editor. IDEs and lightweight editors are the two
primary categories of code editors.

IDE (Integrated Development
Environment)

An extensive feature-rich editor that typically works
on a “whole project” is referred to as an IDE.

It is a complete “development environment,” as
the name implies, rather than merely an editor.

MERN Stack Tutorial
for Web Development
Aspirants
Published On: October 14, 2024

MERN Stack Tutorial for Web
Development Aspirants There
is a growing need for
competent MERN…

Tableau Developer
Salary in Chennai
Published On: October 12, 2024

Introduction A Tableau
Developer designs, develops,
and maintains dashboards
and visualizations using
Tableau software. Key…

VMware Tutorial for
Cloud Computing
Aspirants
Published On: October 12, 2024

VMware Tutorial for Cloud
Computing Aspirants VMware
software allows you to run a
virtual machine…

https://www.softlogicsys.in/javascript-interview-questions-and-answers/
https://www.softlogicsys.in/angularjs-training-in-chennai/
https://www.softlogicsys.in/mern-stack-tutorial-for-web-development-aspirants/
https://www.softlogicsys.in/tableau-developer-salary-in-chennai/
https://www.softlogicsys.in/tableau-developer-salary-in-chennai/
https://www.softlogicsys.in/tableau-developer-salary-in-chennai/
https://www.softlogicsys.in/tableau-developer-salary-in-chennai/
https://www.softlogicsys.in/vmware-tutorial-for-cloud-computing-aspirants/
https://www.softlogicsys.in/vmware-tutorial-for-cloud-computing-aspirants/
https://www.softlogicsys.in/vmware-tutorial-for-cloud-computing-aspirants/
https://www.softlogicsys.in/vmware-tutorial-for-cloud-computing-aspirants/
https://www.softlogicsys.in/vba-macros-tutorial-for-beginners/
https://www.softlogicsys.in/vba-macros-tutorial-for-beginners/
https://www.softlogicsys.in/vba-macros-tutorial-for-beginners/

An IDE connects with a testing environment, a
version management system like git, and other
“project-level” things.
It loads the project, which may consist of
several files, permits file navigation, and offers
auto-completion based on the entire project.

IDE Options for JavaScript

Visual Studio Code (cross-platform, free).
WebStorm (cross-platform, paid).

Additionally, there is “Visual Studio” for Windows,
which should not be confused with “Visual Studio
Code.”

The powerful, premium editor “Visual Studio” is only
available for Windows and is ideal for the “.NET”
framework. It excels at JavaScript as well. A free
version of Visual Studio Community is also
available.

Lightweight Editors

“Lightweight editors” are quick, stylish, and easy to
use, yet they lack the functionality of IDEs. Their
primary function is to quickly open and edit files.

An IDE functions at the project level, loading
significantly more data at startup and doing
necessary structural analysis of the project,
etc.
This is the primary distinction between an IDE
and a “lightweight editor.”
If we only require one file, a lightweight editor
operates considerably more quickly.

Popular Choices of Lightweight Editors:

Sublime Text (shareware, cross-platform).
Notepad++ (free for Windows).
Vim and Emacs for experts.

Download JavaScript Syllabus PDF

VBA Macros Tutorial
for Beginners
Published On: October 10, 2024

VBA Macros Tutorial for
Beginners VBA macros are
programs that automate
repetitive operations in
Microsoft…

https://www.softlogicsys.in/java-script-course-syllabus/
https://www.softlogicsys.in/vba-macros-tutorial-for-beginners/
https://www.softlogicsys.in/vba-macros-tutorial-for-beginners/
https://www.softlogicsys.in/vba-macros-tutorial-for-beginners/

Fundamentals of JavaScript

The <script> tag allows JavaScript scripts to be put
virtually anywhere within an HTML text.

Example

It is just that simple. As we see here, JavaScript code
included in the <script> element is automatically
run by the browser when it processes the tag.

Variables in JavaScript

A JavaScript application typically needs to interact
with data. Here are two examples:

Online Shop: An online store may provide
information on products for sale as well as a
buying cart.
Chat App: Information from a chat program
could contain messages, users, and a lot
more.

This information is stored in variables.

A variable is a type of data “named storage.”
Variables can be used to keep track of guests, gifts,
and other information.

<!DOCTYPE HTML>

<html>

<body>

 <script>

 alert(‘Hello, world!’);

 </script>

</body>

</html>

The let keyword in JavaScript is used to create
variables.

The following statement declares (or creates) a
variable called “message”:

let message;

We can now use the assignment operator =: to
insert some data into it.

let message;

message = ‘Hello’; // store the string ‘Hello’ in the
variable named message

At this point, the string is saved in the memory
location linked to the variable. We can use the
variable name to get access to it:

let message;

message = ‘Hello!’;

alert(message); // shows the variable content

We can condense the variable declaration and
assignment into one line by doing this:

let message = ‘Hello!’; // define the variable and
assign the value

alert(message); // Hello!

Additionally, we can declare many variables in a
single line:

let user = ‘John’, age = 25, message = ‘Hello’;

Although it may seem shorter, we do not advise
doing such. Please use a single line per variable to
improve readability. Although a little longer, the
multiline version is simpler to read:

let user = ‘John’;

let age = 25;

let message = ‘Hello’;

This multiline style is also used by some to define
numerous variables:

let user = ‘John’,

 age = 25,

 message = ‘Hello’;

Alternatively, in the “comma-first” format:

let user = ‘John’

 , age = 25

 , message = ‘Hello’;

All of these variations function in the same way,
technically. Thus, everything comes down to
aesthetics and personal preference.

The keywords let and var are nearly identical. It
declares a variable in the same way, albeit a little
more “old-fashioned.”

Javascript Developer Salary in
Chennai

Constants in JavaScript

Use const rather than let to declare a constant or
unchanging variable:

const myBirthday = ‘18.04.1982’;

“Constants” are variables that are declared with
const. They are not transferable. If this were
attempted, an error would result:

const myBirthday = ‘18.04.1982’;

myBirthday = ‘01.01.2001’; // error, can’t reassign the
constant!

Programmers can use the const keyword to ensure
that a variable will never change and can inform all
users of this fact.

Uppercase Constants

Constants are frequently used as aliases for values
that are known ahead of time but are hard to recall.
These constants are named with underscores and
capital letters.

Let’s create constants for colors, for example, using
the “web” (hexadecimal) format:

const COLOR_RED = “#F00”;

const COLOR_GREEN = “#0F0”;

const COLOR_BLUE = “#00F”;

const COLOR_ORANGE = “#FF7F00”;

let color = COLOR_ORANGE;

alert(color); // #FF7F00

Advantages:

“#FF7F00” is much harder to recall than
COLOR_ORANGE.
Typing “#FF7F00” incorrectly is far more
common than COLOR_ORANGE.
COLOR_ORANGE has significantly more
meaning in the code than #FF7F00.

A variable is said to be “constant” if its value is
constant. However, some constants like the
hexadecimal representation of red are known
before execution, whereas other constants are
determined during runtime and remain constant
after they are assigned.

Example

const pageLoadTime = /* time taken by a webpage
to load */;

Since pageLoadTime’s value is unknown before the
page loads, it is named conventionally. However,
since it remains unchanged after the assignment, it
remains a constant.

Put otherwise, the main purpose of capital-named
constants is as aliases for “hard-coded” values.

Rules for Declaring Variables and
Constants

Make use of names that are easy for humans
to understand, such as shopping_cart or
username.
If you’re not experienced, avoid using
acronyms or short names like a, b, and c.
Give names the most detail and succinctness
possible. Value and data are two examples of
terrible names. Names like those don’t express
anything.
They should only be used if the code’s context
makes it very clear whatever value or data the
variable is referring to.
Decide on terms both as a team and for
yourself. We should call associated variables
currentUser or newUser instead of
currentVisitor or newManInTown if a site visitor
is referred to as a “user.”

New to web development? Begin your career with
our HTML training in Chennai.

Types of Operators in JavaScript

In JavaScript, many types of operators are used to
carry out various operations. Some of the
JavaScript operators are as follows:

Arithmetic Operator
Comparison Operator
Bitwise Operator
Logical Operator
Assignment Operator

Arithmetic Operator

https://www.softlogicsys.in/html-training-in-chennai/

The operands are applied to arithmetic operations
through the use of arithmetic operators. The
following operators are referred to as JavaScript
arithmetic operators:

Operator Description Example

+
To add two
operands

12 + 12 = 24

–

To subtract the
second from
the first
operand

42 – 10 = 32

/
To divide the
number by the
denominator

10/5 = 2

*
To multiple two
operands

2 * 2 = 4

%
To display the
remainder

5%2 = 1

++
To increase
the values by
one

If a = 2, then
a++ = 3

—
To decrease
the values by
one

If a = 2, then
a– = 1

Comparison Operator

The two operands are compared by the JavaScript
comparison operator. These are the comparison
operators:

Operator Description Example

= =

To evaluate
whether or not
two operands
are equal. If
the answer is

7 = = 3 = false

yes, the
condition is
met.

===
To find the
identical

1 == 2 = false

!=

To determine
whether or not
two operands
are equal.
When the
values are not
equal, the
condition is
fulfilled.

2!=1 = true

!==

The
implication is
that the two
values are not
the same.

2!==2 = false

>

To determine if
the left
operand’s
value is higher
than the right
operand’s
value.

3 > 2 = true

>=

To determine if
the left
operand’s
value is
greater than or
equal to the
right operand’s
value.

23 >= 23 = true

<

To determine if
the left
operand’s
value is
smaller than

3 < 2 = false

the right
operand’s
value.

<=

To determine if
the left
operand’s
value is less
than or equal
to the right
operand’s
value.

3 <= 3 = true

Bitwise Operator

Bitwise operations on operands are carried out
using the bitwise operators. These bitwise operators
are listed below:

Operator Description Example

&

Each bit of its
integer
parameters is
subjected to a
boolean AND
operation.

(1 == 2 & 2 ==
3) = false

|

On each bit of
each of its
integer
parameters, it
does a
Boolean OR
operation.

(1 == 1 | 2 == 3)
= true

^

Bitwise XOR
action is
carried out by
this operator.

(1 == 2 ^ 2 ==
3) = false

~

It is a unary
operator that
functions by
flipping every

(~1) = – 1

bit in the
operand.

<<

The number of
positions
supplied in the
second
operand is
used to shift all
the bits in the
first operand
to the left.

(1 << 2) = 4

>>

The amount of
bits indicated
by the right
operand shifts
the value of
the left
operand to the
right.

(1>>2) = 2

>>>

The bits
moved in on
the left of this
operator are
always zero,
unlike the >>
operator.

(1>>>2) = 2

Logical Operators

All of the JavaScript logical operators are listed in
the list:

Operator Description Example

&&

Logical AND:
The condition
is satisfied if
both operands
are non-zero.

(1 == 2 && 2 ==
3) = false

Logical OR: If
any of the two

||
operands is
non-zero, the
condition is
said to be
logically true.

(1 == 2 || 2 ==
2) = true

!

Logical Not:
reverses the
operand’s
logical state.

!(1 == 2) = true

Assignment Operators

The operand can be given values by using the
assignment operators. Assigning operators in
JavaScript include the following:

Operator Description Example

=

The left-side
operand gets
values from
the right-side
operand.

2 + 1 = 3

+=

It assigns the
outcome to
the left
operand after
adding the
right operand
to the left one

a = 2; a+= 1;
then, a = 3

-=

It allocates the
result to the
left operand
after
subtracting
the right
operand from
the left one

a = 3, a-=1;
then, a = 2

It adds the
result to the

*=
left operand
after
multiplying the
right and left
operands.

a = 1, a*= 2;
then a = 2

/=

The result is
assigned to
the left
operand after
the left
operand and
right operand
are divided.

a = 4, a/=2;
then a = 2

%=

It performs a
modulus
operation with
two operands
and transfers
the outcome
to the left
operand.

a = 5, a%=2;
then a = 1

Explore a wide range of opportunities by enrolling in
our MEAN Stack course in Chennai.

Beginner Javascript Projects

Type Conversion in JavaScript

Generally in JavaScript, operators and functions
automatically transform the values passed to them
to the appropriate type.

For example, the alert automatically displays any
value by converting it to a string. Values are
converted to numbers using mathematical
procedures.

Additionally, there are times when we must explicitly
change a value to the desired type.

String Conversion

https://www.softlogicsys.in/mean-stack-training-in-chennai/

When we require a value in its string form, string
conversion takes place.

Example: alert(value) displays the value by doing
this.

To convert a value to a string, we may alternatively
use the String(value) function:

let value = true;

alert(typeof value); // boolean

value = String(value); // now value is a string “true”

alert(typeof value); // string

Most string conversions are clear. A false is changed
to “false,” a null to “null,” and so on.

Numeric Conversion

In mathematical expressions and functions,
numerical conversion takes place automatically.

When division “/” is applied to non-numbers.

Example:

alert(“6” / “2”); // 3, the conversion of strings to
numbers

To explicitly convert a value to a number, we can
use the Number(value) function as follows:

Example

let str = “123”;

alert(typeof str); // string

let num = Number(str); // becomes a number 123

alert(typeof num); // number

When we read a value from a string-based source,
such as a text form, but anticipate a number to be
submitted, explicit conversion is typically necessary.

NaN is the result of such a conversion if the string is
not a valid number.

let age = Number(“an arbitrary string instead of a
number”);

alert(age); // NaN, conversion failed

Rules for Numeric Conversion

Value Result

undefined NaN

null 0

true and false 1 and 0

string

Whitespaces are
eliminated from the
beginning and finish,
which includes spaces,
tabs, newlines, etc. The
outcome is 0 if there is
an empty string left.
The number is “read”
from the string if not.

Example

alert(Number(” 123 “)); // 123

alert(Number(“123z”)); // NaN (error reading a
number at “z”)

alert(Number(true)); // 1

alert(Number(false)); // 0

Note that undefined and null behave differently in
this situation: undefined becomes NaN while null
becomes zero.

Boolean Conversion
The easiest conversion is boolean. It
occurs in logical operations (condition

tests and other such things will come
up later), but it can also be done
explicitly by calling Boolean(value).

Rules for Boolean Conversion

Intuitively “empty” values such as 0; null;
undefined; empty string; and NaN turn into
false.
Other values become true.

Example

alert(Boolean(1)); // true

alert(Boolean(0)); // false

alert(Boolean(“hello”)); // true

alert(Boolean(“”)); // false

Conditional Statements in JavaScript

We have to repeat tasks frequently. JavaScript
offers conditional statements like loop statements
such as while and for. Using loops, you may repeat
the same code repeatedly.

Example: Executing the same code for every
number between 1 and 10 or sequentially producing
items from a list.

While Loop

The syntax for the while loop is as follows:

while (condition) {

 // code

 // “loop body”

}

The code from the loop body is run as long as the
condition is true.

The loop below, for example, outputs i while i < 3:

Example:

An iteration is the single execution of the loop body.
In the previous example, the loop runs through three
iterations.

In the previous example, if i++ was absent, the loop
would (in theory) never end. In reality, the browser
offers methods to break out of these loops, and
server-side JavaScript allows us to end the process.

A loop condition can be any expression or variable,
not only a comparison while evaluating the
condition and turning it into a boolean.

For example, while (i) is a shorter form of while (i!=
0):

let i = 3;

while (i) { // when i becomes 0, the condition

let i = 0;

while (i < 3) { //

shows 0, then 1,

then 2

 alert(i);

 i++;

}

becomes false, and the loop stops

 alert(i);

 i–;

}

Do…While Loop

The do..while syntax can be used to shift the
condition check below the body of the loop:

do {

 // loop body

} while (condition);

The loop will run the body repeatedly while it is true,
then check the condition and run the body once
more.

Only use this syntax when you want the loop’s body
to run at least once regardless of whether the
condition is true. The alternative version is typically
favored: while(…) {…}.

For Loop

Although the for loop is the most widely used loop, it
is also the most difficult. The following is the syntax.

Example:

let i = 0;

do {

 alert(i);

 i++;

} while (i < 3);

General Loop Algorithm

for (begin; condition; step) {

 // … loop body .. }

Let’s use these components as examples

to understand their meaning. The loop

that follows executes alert(i) for each i

between 0 and (but not including) 3:

for (let i = 0; i < 3; i++) { // shows 0,

then 1, then 2

 alert(i);

}

Run begin

→ (if condition → run body and run
step)

→ (if condition → run body and run

step)

→ (if condition → run body and run
step)

→ …

Example:

// for (let i = 0; i < 3; i++) alert(i)

// run begin

let i = 0

Breaks in Loop

A loop usually breaks when its condition is no longer
true. However, we can use the specific break
directive to force the exit at any time.

The loop below, for instance, requests a string of
numbers from the user and “breaks” if no number is
entered:

let sum = 0;

while (true) {

 let value = +prompt(“Enter a number”, ”);

 if (!value) break; // (*)

 sum += value;

}

alert(‘Sum: ‘ + sum);

If the user cancels the input or enters an empty line,
the break directive is triggered at line (*). It
immediately ends the loop and moves control to
the line that comes after it. Specifically, be mindful.

// if condition → run body and run step

if (i < 3) { alert(i); i++ }

// if condition → run body and run step

if (i < 3) { alert(i); i++ }

// if condition → run body and run step

if (i < 3) { alert(i); i++ }

// …finish, because now i == 3

When a loop’s condition needs to be verified
somewhere along its body, rather than at its start or
finish, the “infinite loop + break as needed” combo
works incredibly well.

Continue in Loop

The command “lighter version” of break is
“continue.” The entire cycle is not stopped. Rather, it
compels the loop to begin a new iteration (if the
condition permits) and ends the present one.

If we’re finished with this iteration and want to go on
to the next, we can use it. The loop below keeps
producing only odd values.

for (let i = 0; i < 10; i++) {

 if (i % 2 == 0) continue;

 alert(i); // 1, then 3, 5, 7, 9 }

The continue directive ends the body’s execution for
even values of i and transfers control to the next for
loop (with the next number). As a result, only odd
values trigger the alarm.

Learn the popular JavaScript framework with the
React.JS course to design impressive websites.

Switch Statement in JavaScript

Multiple if checks can be replaced by a switch
statement. It provides a more illustrative method of
comparing a value with several variations. The
switch has an optional default and one or more
case blocks.

Syntax:

switch(x) {

 case ‘value1’: // if (x === ‘value1’)

 …

 [break]

https://www.softlogicsys.in/react-js-training-in-chennai/

 case ‘value2’: // if (x === ‘value2’)

 …

 [break]

 default:

 …

 [break]

}

Strict equality with the value from the first case
(value 1), the value from the second (value 2),
and so forth, is checked for the value of x.
The switch begins running the code from the
matching case until the closest break (or until
the switch ends) if equality is discovered.
If no case matches, the default code—if any—is
run.

Example

let a = 2 + 2;

switch (a) {

 case 3:

 alert(‘Too small’);

 break;

 case 4:

 alert(‘Exactly!’);

 break;

 case 5:

 alert(‘Too big’);

 break;

 default:

 alert(“I don’t know such values”); }

At this point, the switch begins comparing a with the
first case variant, which is 3. The game is lost. Next,
4. Given that there is a match, case 4 is executed up
until the closest break.

Grouping of Case

Case variations that have the same code might be
grouped.

For example, if we wish case 3 and case 5 to use the
same code:

let a = 3;

switch (a) {

 case 4:

 alert(‘Right!’);

 break;

 case 3: // (*) grouped two cases

 case 5:

 alert(‘Wrong!’);

 alert(“Why don’t you take a math class?”);

 break;

 default:

 alert(‘The result is strange. Really.’);

}

At this point, 3 and 5 display the same message.
The ability to “group” situations is a side
consequence of how the switch/case operates
without a break. Because there is no break, case 3
execution in this instance begins at line (*) and
continues through case 5.

Type Cases

The equality check is never lenient. For the values to
match, they must be of the same type.

let arg = prompt(“Enter a value?”);

switch (arg) {

 case ‘0’:

 case ‘1’:

 alert(‘One or zero’);

 break;

 case ‘2’:

 alert(‘Two’);

 break;

 case 3:

 alert(‘Never executes!’);

 break;

 default:

 alert(‘An unknown value’); }

The first alert sounds for 0 and 1.
The second alert goes off for 2.
The question yields a string “3” for the number
3, yet it is not exactly equal to 3. Thus, case 3
has a dead code! It will run the default variant.

Our Python web development course will be helpful
for you to accelerate your career.

Java Script Code Challenges

Functions in JavaScript

We frequently have to carry out a comparable

https://www.softlogicsys.in/python-training-in-chennai/

action throughout the script.

For example, we must display a visually appealing
message when a visitor checks in, logs out, and
possibly even someplace else.

The primary “building blocks” of the program are its
functions. They permit the code to be called
repeatedly without becoming repetitive.

Function Declaration

A function declaration can be used to create a
function.

Syntax

function showMessage() {

 alert(‘Hello everyone!’);

}

The function keyword appears first, followed by the
function’s name, a list of parameters, and finally the
function’s code, also known as “the function body,”
enclosed in curly brackets.

function name(parameter1, parameter2, …
parameterN) {

 // body }

Example

function showMessage() {

 alert(‘Hello everyone!’);

}

showMessage();

showMessage();

The function’s code is run by the call
showMessage(). The message will appear twice in
this instance. The avoidance of code duplication is

a primary goal of functions, as this example amply
illustrates.

It only takes editing the code in the function that
outputs the message if we ever need to change the
message or how it is shown.

Local Variables

Only the function in which it is declared can see the
variable.

Example

function showMessage() {

 let message = “Hello, I’m JavaScript!”; // local
variable

 alert(message);

}

showMessage(); // Hello, I’m JavaScript!

alert(message); // <– Error! The variable is local to
the function.

Outer Variables

An external variable can also be accessed by a
function.

Example:

let userName = ‘John’;

function showMessage() {

 let message = ‘Hello, ‘ + userName;

 alert(message);

}

showMessage(); // Hello, John

The outer variable is fully accessible to the function.

It is also editable.

Example

let userName = ‘John’;

function showMessage() {

 userName = “Bob”; // (1) changed the outer
variable

 let message = ‘Hello, ‘ + userName;

 alert(message);

}

alert(userName); // John before the function call

showMessage();

alert(userName); // Bob, the value was modified
by the function

Only in the absence of a local variable is the outer
variable used.

A variable with the same name that is declared
inside a function shadows the external one.

Example

let userName = ‘John’;

function showMessage() {

 let userName = “Bob”; //local variable

 let message = ‘Hello, ‘ + userName;

 alert(message); }

showMessage();

alert(userName); // The code did not visit the
outer variable, leaving John unaltered.

Parameters

With arguments, we may give functions any kind of
data.

Example

function showMessage(from, text) {

 alert(from + ‘: ‘ + text);

}

showMessage(‘Ann’, ‘Hello!’);

showMessage(‘Ann’, “What’s up?”);

The supplied values are copied to local variables
from and text when the function is called in lines (*)
and (**). The function then employs them.

A function always receives a copy of the value, the
change is not visible from the outside:

Example:

function showMessage(from, text) {

 from = ‘*’ + from + ‘*’;

 alert(from + ‘: ‘ + text);

}

let from = “Ann”;

showMessage(from, “Hello”); // *Ann*: Hello

alert(from);

A value is also referred to as an argument when it is
supplied as a function parameter.

The variable (a declaration time term)
included in parenthesis in the function
declaration is called a parameter.
The value that is supplied to the function when
it is called—a call time term—is known as an
argument.

Functions are declared with a list of their
parameters, and then we call them with arguments.

Enhance your skills to become a full-stack
developer with our exclusive training.

Default Values

The associated value becomes undefined when a
function is invoked without an argument.

Example: The method showMessage(from, text)
stated before can be invoked with just one
argument:

showMessage(“Ann”);

That isn’t an error. The result of such a call would be
“*Ann*: undefined.” Since the text’s value isn’t
passed, it turns undefined.

In the function declaration, we can use =: to set the
so-called “default” (to use if omitted) value for a
parameter.

function showMessage(from, text = “no text given”)
{

 alert(from + “: ” + text);

}

showMessage(“Ann”);

If the argument is present, the default value also
enters but strictly equals undefined, like in this case:

showMessage(“Ann”, undefined);

In this case, “no text given” is a string, but it might
also be a more intricate expression that is only
assessed and allocated if a parameter is not there.

function showMessage(from, text =
anotherFunction()) {

 // anotherFunction() only executed if no text given

https://www.softlogicsys.in/full-stack-developer-training-in-chennai/
https://www.softlogicsys.in/full-stack-developer-training-in-chennai/

 // its result becomes the value of text

}

Returning Value

As a result, a function can return a value to the
caller code.

A function that adds two values would be the most
straightforward example:

Rules for naming functions:

A function’s name should make it obvious what
it does.
Since a function is an action, its names are
typically spoken.
Numerous popular function prefixes, such as
create, display, get, verify, and so forth, are
available. They can be used to suggest what a
function accomplishes.

Java Script Online Training

Advantages of JavaScript

Following are the advantages of learning JavaScript
for your web development career.

Flexibility: JavaScript may be utilized to create
mobile apps, games, websites, and more.
Client and Server-Side: JavaScript is currently
utilized for server-side application

function sum(a, b) {

 return a + b;

}

let result = sum(1, 2);

alert(result); // 3

https://www.softlogicsys.in/javascript-online-training/

development due to frameworks like Node.js
and Express.js.
End-to-End Solutions: JavaScript gives
programmers the ability to write
comprehensive fixes for a range of issues.
Continuous Evolution: New features and
standards are always being added to
JavaScript.
Bright Community: A sizable user and mentor
community actively supports the development
of JavaScript.

Conclusion

We have covered the fundamental concepts in this
JavaScript tutorial. Explore more in our JavaScript
training in Chennai to start a promising career in
web development.

Share on your Social
Media

Softlogic Academy

Softlogic Systems
KK Nagar [Corporate Office]

No.10, PT Rajan Salai, K.K. Nagar, Chennai
– 600 078.
Landmark: Karnataka Bank Building
Phone: +91 86818 84318
Email: enquiry@softlogicsys.in
Map: Google Maps Link

Navigation

Important Links

About Us

Blog Posts

Careers

Contact

Placement Training

Corporate Training

Hire With Us

Job Seekers

SLA’s Recently Placed Students

Reviews

Sitemap

https://www.softlogicsys.in/javascript-training-in-chennai/
https://www.softlogicsys.in/javascript-training-in-chennai/
https://www.facebook.com/sharer.php?u=https%3A%2F%2Fwww.softlogicsys.in%2Fjavascript-tutorial-for-beginners%2F&picture=&title=JavaScript%20Tutorial%20for%20beginners
https://x.com/share?text=JavaScript%20Tutorial%20for%20beginners&url=https%3A%2F%2Fwww.softlogicsys.in%2Fjavascript-tutorial-for-beginners%2F
https://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fwww.softlogicsys.in%2Fjavascript-tutorial-for-beginners%2F&title=JavaScript%20Tutorial%20for%20beginners
https://api.whatsapp.com/send?text=*JavaScript%20Tutorial%20for%20beginners*+https%3A%2F%2Fwww.softlogicsys.in%2Fjavascript-tutorial-for-beginners%2F
https://pinterest.com/pin/create/button/?url=https%3A%2F%2Fwww.softlogicsys.in%2Fjavascript-tutorial-for-beginners%2F&media=
https://t.me/share/url?url=https%3A%2F%2Fwww.softlogicsys.in%2Fjavascript-tutorial-for-beginners%2F&text=JavaScript%20Tutorial%20for%20beginners
tel:+918681884318
https://maps.app.goo.gl/H5GK2EjzevzUBMnA7
https://www.softlogicsys.in/about-us/
https://www.softlogicsys.in/blog/
https://www.softlogicsys.in/careers/
https://www.softlogicsys.in/contact/
https://www.softlogicsys.in/placement-training-institute-in-chennai/
https://www.softlogicsys.in/corporate-training/
https://www.softlogicsys.in/hire-with-us/
https://www.softlogicsys.in/submit-your-cv/
https://www.softlogicsys.in/placed-students-list/
https://www.softlogicsys.in/reviews/
https://www.softlogicsys.in/sitemap.xml
https://www.softlogicsys.in/disclaimer/

OMR

No. E1-A10, RTS Food Street
92, Rajiv Gandhi Salai (OMR),
Navalur, Chennai - 600 130.
Landmark: Adj. to AGS Cinemas
Phone: +91 89256 88858
Email: info@softlogicsys.in
Map: Google Maps Link

Courses Social Media Links

Review Sources

Disclaimer

Privacy Policy

Terms and Conditions

Python

Software Testing

Full Stack Developer

Java

Power BI

Clinical SAS

Data Science

Embedded

Cloud Computing

Hardware and Networking

VBA Macros

Mobile App Development

DevOps

Google

Trustpilot

Glassdoor

Mouthshut

Sulekha

Justdial

Ambitionbox

Indeed

Software Suggest

Sitejabber

Copyright © 2024 - Softlogic
Systems. All Rights Reserved

SLA™ is a trademark of Softlogic Systems, Chennai.
Unauthorised use prohibited.

https://maps.app.goo.gl/H5GK2EjzevzUBMnA7
tel:+918925688858
https://maps.app.goo.gl/s67uxUtcFVbXDMpz6
https://www.softlogicsys.in/disclaimer/
https://www.softlogicsys.in/privacy-policy/
https://www.softlogicsys.in/terms-and-conditions/
https://www.softlogicsys.in/python-training-in-chennai/
https://www.softlogicsys.in/software-testing-training-in-chennai/
https://www.softlogicsys.in/full-stack-developer-training-in-chennai/
https://www.softlogicsys.in/java-training-in-chennai/
https://www.softlogicsys.in/power-bi-training-in-chennai/
https://www.softlogicsys.in/clinical-sas-training-in-chennai/
https://www.softlogicsys.in/datascience-training-in-chennai/
https://www.softlogicsys.in/embedded-training-in-chennai/
https://www.softlogicsys.in/cloud-computing-training-in-chennai/
https://www.softlogicsys.in/hardware-networking-training-in-chennai/
https://www.softlogicsys.in/vba-macros-training-in-chennai/
https://www.softlogicsys.in/mobile-application-development-training-in-chennai/
https://www.softlogicsys.in/devops-training-in-chennai/
https://www.google.com/search?q=slainstitute&rlz=1C1CHBF_enIN1034IN1034&oq=slainstitute&aqs=chrome..69i57j69i60l4j69i65l3.6143j0j1&sourceid=chrome&ie=UTF-8#lrd=0x3a52678b6ec7b719:0xc0cf6f565e5669c7,1,,,,
https://www.trustpilot.com/review/softlogicsys.in
https://www.glassdoor.co.in/Reviews/Softlogic-Systems-Reviews-E520130.htm/
https://www.mouthshut.com/product-reviews/Softlogic-Systems-Pvt-Ltd-reviews-925594128
https://www.sulekha.com/softlogic-systems-pvt-ltd-kk-nagar-chennai-10331127-contact-address
https://www.justdial.com/Chennai/Softlogic-Systems-Pvt-Ltd-Near-Sivan-Park-K-K-Nagar/044PXX44-XX44-111208140938-Z3M3_BZDET
https://www.ambitionbox.com/reviews/softlogic-systems-reviews
https://in.indeed.com/cmp/Softlogic-Systems/reviews
https://www.softwaresuggest.com/company/softlogic-systems
https://www.sitejabber.com/reviews/softlogicsys.in

