
Share on your Social
Media

Git Tutorial for
beginners
Published On: September 16, 2024

Git Tutorial for beginners

Git is a robust version control system that is
frequently used to monitor source code changes
made during the software development process.
You can easily understand and implement Git
concepts in your projects after reading this Git
tutorial.

Introduction to Git

Git is becoming an essential tool for DevOps
engineers all around the world. Gaining an
understanding of Git will considerably improve your
teamwork and coding efficiency. You can learn the
following in this Git tutorial:

Overview of Git

Featured
Articles

Want to know
more about

becoming an
expert in IT?

Click Here to Get
Started

100%
Placement
Assurance

Related Courses
at SLA
 Git Online Training

 Git Training in OMR

Git Training in
Chennai

Related Posts

»

EASY WAY TO IT JOB

Q
ui

ck
 E

nq
ui

ry

https://www.softlogicsys.in/python-full-stack-developer-course/
https://www.softlogicsys.in/python-full-stack-developer-course/
https://www.softlogicsys.in/python-full-stack-developer-course/
https://www.softlogicsys.in/python-full-stack-developer-course/
https://www.softlogicsys.in/java-full-stack-developer-course/
https://www.softlogicsys.in/java-full-stack-developer-course/
https://www.softlogicsys.in/data-science-full-stack-course/
https://www.softlogicsys.in/business-intelligence-and-data-analytics-course/
https://www.softlogicsys.in/software-testing-and-quality-assurance-course/
https://www.softlogicsys.in/mean-full-stack-developer-course/
https://www.softlogicsys.in/mern-full-stack-developer-course/
https://www.softlogicsys.in/dot-net-fullstack-course/
https://www.softlogicsys.in/aws-devops-engineer-course/
https://www.softlogicsys.in/azure-devops-training-in-chennai/
https://www.softlogicsys.in/placement-training-institute-in-chennai/
https://www.softlogicsys.in/placement-training-institute-in-chennai/
https://www.softlogicsys.in/reviews/
https://www.softlogicsys.in/placed-students-list/
https://www.softlogicsys.in/placed-students-list/
https://www.softlogicsys.in/placed-students-list/
https://www.softlogicsys.in/placed-students-list/
https://www.softlogicsys.in/placed-students-list/
https://www.softlogicsys.in/corporate-training/
https://www.softlogicsys.in/hire-with-us/
https://www.softlogicsys.in/hire-with-us/
https://www.softlogicsys.in/hire-with-us/
https://www.softlogicsys.in/hire-with-us/
https://www.softlogicsys.in/submit-your-cv/
https://www.softlogicsys.in/careers/
https://www.softlogicsys.in/careers/
https://www.softlogicsys.in/careers/
https://www.softlogicsys.in/careers/
https://www.facebook.com/sharer.php?u=https%3A%2F%2Fwww.softlogicsys.in%2Fgit-tutorial-for-beginners%2F&picture=https%3A%2F%2Fwww.softlogicsys.in%2Fwp-content%2Fuploads%2F2024%2F09%2FGit-Tutorial-22.jpg&title=Git%20Tutorial%20for%20beginners
https://x.com/share?text=Git%20Tutorial%20for%20beginners&url=https%3A%2F%2Fwww.softlogicsys.in%2Fgit-tutorial-for-beginners%2F
https://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fwww.softlogicsys.in%2Fgit-tutorial-for-beginners%2F&title=Git%20Tutorial%20for%20beginners
https://api.whatsapp.com/send?text=*Git%20Tutorial%20for%20beginners*+https%3A%2F%2Fwww.softlogicsys.in%2Fgit-tutorial-for-beginners%2F
https://pinterest.com/pin/create/button/?url=https%3A%2F%2Fwww.softlogicsys.in%2Fgit-tutorial-for-beginners%2F&media=https%3A%2F%2Fwww.softlogicsys.in%2Fwp-content%2Fuploads%2F2024%2F09%2FGit-Tutorial-22.jpg
https://t.me/share/url?url=https%3A%2F%2Fwww.softlogicsys.in%2Fgit-tutorial-for-beginners%2F&text=Git%20Tutorial%20for%20beginners
https://www.softlogicsys.in/devops-training-in-chennai/
https://www.softlogicsys.in/devops-training-in-chennai/
https://www.softlogicsys.in/git-online-training/
https://www.softlogicsys.in/git-online-training/
https://www.softlogicsys.in/git-training-in-omr/
https://www.softlogicsys.in/git-training-in-chennai/
https://www.softlogicsys.in/git-training-in-chennai/
tel:+918681884318
https://api.whatsapp.com/send/?phone=918681884318&text=Hi+I+am+looking+for+more+information+on+your+training+courses&type=phone_number

Git Installation and Configuration
Git New Files
Git Staging
Git Commit
Git Help
Git Branch
Merge branches

Download GIT Tutorial PDF

Overview of Git

Developers can work together, keep track of
changes in their codebase, and effectively manage
many project versions with Git, a distributed version
control system (DVCS). Linus Torvalds created Git in
2005 to develop Linux kernels. The latest version of
Git is 2.45.1.

Monitoring modifications to the code
Monitoring the individuals who made
modifications
Cooperation in coding

With GitHub, you may access and download
projects from any computer that hosts Git
repositories. GitHub allows you to perform the
following:

Store Repositories: Your repositories are
hosted by GitHub.
Collaborate: Work together with developers
from any location by collaborating.
Version Control: Use GitHub and Git to oversee
cooperative processes.

Features of Git

Important features of Git:

Version control to track changes in the code.

Tableau Developer
Salary in Chennai
Published On: October 12, 2024

Introduction A Tableau
Developer designs, develops,
and maintains dashboards
and visualizations using
Tableau software. Key…

Ideas For GitHub
Projects
Published On: October 12, 2024

Introduction A GitHub
Professional manages
software development
projects on the GitHub
platform. Responsibilities
include version…

VMware Tutorial for
Cloud Computing
Aspirants
Published On: October 12, 2024

VMware Tutorial for Cloud
Computing Aspirants VMware
software allows you to run a
virtual machine…

https://www.softlogicsys.in/tableau-developer-salary-in-chennai/
https://www.softlogicsys.in/ideas-for-github-projects/
https://www.softlogicsys.in/ideas-for-github-projects/
https://www.softlogicsys.in/ideas-for-github-projects/
https://www.softlogicsys.in/ideas-for-github-projects/
https://www.softlogicsys.in/vmware-tutorial-for-cloud-computing-aspirants/
https://www.softlogicsys.in/vmware-tutorial-for-cloud-computing-aspirants/
https://www.softlogicsys.in/vmware-tutorial-for-cloud-computing-aspirants/
https://www.softlogicsys.in/vmware-tutorial-for-cloud-computing-aspirants/
https://www.softlogicsys.in/vba-macros-tutorial-for-beginners/
https://www.softlogicsys.in/vba-macros-tutorial-for-beginners/
https://www.softlogicsys.in/vba-macros-tutorial-for-beginners/

Collaboration to be used by multiple
developers.
Backup facility for the entire project
Branching and merging for fixing bugs easily.
Open source for free contribution.
Industry-standard skills in the software
industry.

How does Git work?

Initializing a Repository: A folder initialized
with Git is transformed into a repository. Git
keeps track of every modification made to a
hidden folder in that repository.
Staging Changes: Git labels changed files as
“staged” to indicate staging changes.
Adjustments are staged for a desired take that
you wish to preserve.
Committing Changes: After phased
modifications are deemed acceptable,
commit them. Git keeps a thorough log of
every commit.

Git Installation and Configuration

The following website offers a free download of Git:
https://www.git-scm.com/

Git with Command Line

We’re going to launch our command shell before
we use Git. Git bash, which is a part of Git for
Windows, can be used on Windows. The integrated
terminal can be used with Mac and Linux.

The first thing we must do is make sure Git is
installed correctly. Check with the following code:

git –version

git version 2.30.2.windows.1

If Git is installed, the screen should read “git version
X.Y.”

Git Configuration

VBA Macros Tutorial
for Beginners
Published On: October 10, 2024

VBA Macros Tutorial for
Beginners VBA macros are
programs that automate
repetitive operations in
Microsoft…

https://www.git-scm.com/
https://www.softlogicsys.in/vba-macros-tutorial-for-beginners/
https://www.softlogicsys.in/vba-macros-tutorial-for-beginners/
https://www.softlogicsys.in/vba-macros-tutorial-for-beginners/

Tell Git who you are now. Version control systems
should take note of this since every Git commit
makes use of this data:

git config –global user.name “sla-test”

git config –global user.email “test@sla.com”

Replace the email address and user name with your
own. This is certainly something you’ll want to utilize
later on when you sign up for GitHub.

Creating Git Folder

Let’s now establish a new project folder:

mkdir myproject

cd myproject

mkdir creates a brand-new folder.

The current working directory is modified using cd.

Initialize Git

You can initialize Git on that folder after you’ve gone
to the correct one:

git init

Initialized empty Git repository in
/Users/user/myproject/.git/

GIT Interview Questions and Answers

Git New Files

Now let’s add additional files, or use your preferred
text editor to create a new file. After that, save it or
transfer it to the newly formed folder. Learn the
fundamental HTML concepts here.

Example

<!DOCTYPE html>

https://www.softlogicsys.in/git-interview-questions-and-answers/
https://www.softlogicsys.in/html-training-in-chennai/

Save it as index.html in our newly created folder.

Returning to the console, let’s enumerate the files in
our active working directory:

ls

index.html

The files in the directory will be listed by ls.
Index.html exists.

Next, we determine whether it is a part of our
repository by looking at the Git status:

git status

On branch master

No commits yet

Untracked files:

 (use “git add …” to include what will be

<html>

<head>

<title>Hello World!</title>

</head>

<body>

<h1>Hello world!</h1>

<p>This is the first file in my new Git

Repo.</p>

</body>

</html>

committed.)

 index.html

Nothing was added to the commit but untracked
files are present (use “git add” to track).

There are two possible updates for files in your Git
repository folder:

Tracked: Files that Git is aware of and adds to
the repository are called tracked files.
Untracked: Files in your working directory that
haven’t been uploaded to the repository are
called untracked.

Upon initially adding files to an empty repository,
they are not monitored. You must stage them, or
add them to the staging environment for Git to
track them.

Check out our Nagios course to get acquainted
with event monitoring in DevOps.

Git Staging

The Staging Environment and Commit concepts are
two of Git’s main features.

You might be adding, modifying, and deleting files
while you’re working. However, you ought to add the
files to a staging environment whenever you
complete a task or reach a milestone.

Staged files are those that are ready to be
committed to the repository that you are currently
working on.

Example:

git add index.html

The document has to be staged. The result is as
follows:

git status

https://www.softlogicsys.in/nagios-training-in-chennai/

On branch master

No commits yet

Changes to be committed:

 (use “git rm –cached …” to unstage)

 new file: index.html

The file is currently present in the staging
environment.

GIT Syllabus PDF

Git Add Multiple Files

It is also possible to stage multiple files
simultaneously. Let’s expand our working folder with
two extra files. Reopen the text editor.

A repository’s README.md file, which is advised for
all repositories:

hi there, world

Hello World Git sample repository

This repository serves as an example for the Git
tutorial.

If you are new to CSS concepts, explore here.

Example: bluestyle.css

body {

background-color: lightblue;

}

h1 {

color: navy;

https://www.softlogicsys.in/git-course-syllabus/
https://www.softlogicsys.in/css-training-in-chennai/

Index.html

Now, add every file to the staging environment
located in the current directory:

git add –all

To stage all changes (new, updated, and deleted
files), use –all rather than individual filenames.

git status

margin-left: 20px;

}

<!DOCTYPE html>

<html>

<head>

<title>Hello World!</title>

<link rel=”stylesheet”

href=”bluestyle.css”>

</head>

<body>

<h1>Hello world!</h1>

<p>This is the first file in my new Git
Repo.</p>

</body>

</html>

On branch master

No commits yet

Changes to be committed:

 (use “git rm –cached …” to unstage)

 new file: README.md

 new file: bluestyle.css

 new file: index.html

We have added all three files to the staging
environment and are now ready to make our first
commit. Learn Jenkins to automate parts of
software development.

Git Commit

Adding commits allows us to monitor our work’s
advancement and modifications. Every commit is
regarded by Git as a “save point” or change point.
You can go back to this point in the project if you
wish to make changes or discover an issue.

There should always be a message included when
we commit. Every commit should have a clear
message added to it so that you and others can
easily see what has changed and when.

Example

git commit -m “First release of Hello World!”

[master (root-commit) 221ec6e] First release of
Hello World!

 3 files changed, 26 insertions(+)

 create mode 100644 README.md

 create mode 100644 bluestyle.css

 create mode 100644 index.html

The -m “message” option adds a message, and the

https://www.softlogicsys.in/jenkins-training-in-chennai/

commit command executes a commit.

The message that the staging environment has
committed to our repository is “First release of Hello
World!”

Commit without Stage

Using the staging environment seems like a waste
of effort when you make little modifications.
Changes can be directly committed without going
via the staging environment. Every modified,
previously tracked file will be automatically staged
by using the -a option.

Update to index.html:

<!DOCTYPE html>

<html>

<head>

<title>Hello World!</title>

<link rel=”stylesheet”
href=”bluestyle.css”>

</head>

<body>

<h1>Hello world!</h1>

<p>This is the first file in my new Git
Repo.</p>

<p>A new line in our file!</p>

</body>

This time, we’ll use the –short option to view the
changes more concisely:

git status –short

 M index.html

The following are brief status flags:

?? – Untracked files
A – Files added to the stage
M – Modified files
D – Deleted files

We notice the anticipated file has been altered. So
let’s just say it out loud:

git commit -a -m “Updated index.html with a new
line”

[master 09f4acd] Updated index.html with a new
line

 1 file changed, 1 insertion(+)

Git Commit Log

The log command can be used to see a repository’s
commit history:

git log

commit
09f4acd3f8836b7f6fc44ad9e012f82faf861803 (HEAD
-> master)

Author: sla_test

Date: Thu Aug 10 11:20:15 2024 +0100

 Updated index.html with a new line

commit
221ec6e10aeedbfd02b85264087cd9adc18e4b26

Author: sla-test

</html>

Date: Thu Aug 10 11:20:15 2024 +0100

 First release of Hello World!

Git Help

The help command in the command line can be
used in a few different ways:

git command -help: View every option for that
particular command.
git help –all: View the whole list of commands.

Git -help View Your Options for a
Particular Command

git commit -help

usage: git commit [] [–] …

 -q, –quiet after a successful commit, hide
the summary

 -v, –verbose display the difference in the
commit message template

Commit message options

 -F, –file read the file message

 –author replace the author to commit

 –date override the commit date

 -m, –message

 commit message

 -c, –reedit-message

 use and modify the message from
the given commit

 -C, –reuse-message

 reuse the message from the given
commit

 –fixup use a message formatted using
autosquash to repair a specific commit

 –squash utilize a message prepared with auto
squash to squash a given commit

 –reset-author Now that I used -C/-c/–
amend, I am the committer.

 -s, –signoff incorporate a signed-off-by
trailer

 -t, –template utilize the given template file

 -e, –edit compel the commit to be edited

 –cleanup how to remove #comments and
spaces from a message

 –status incorporate the status into the
template for the commit message

 -S, –gpg-sign[=] GPG sign commit

Commit contents options

 -a, –all commit all updated files

 -i, –include add the designated files to the
commit index

 –interactive dynamically include files

 -p, –patch dynamically add modifications

 -o, –only commit just the designated files

 -n, –no-verify avoid using the commit-msg
and pre-commit hooks

 –dry-run demonstrate the potential
offense

 –short concisely display the status

 –branch display branch details

 –ahead-behind total ahead/behind values

computation

 –porcelain machine-readable output

 –long display status in extended format
by default

 -z, –null finish entries with a null value

 –amend change a prior commit

 –no-post-rewrite omit the post-rewrite hook

 -u, –untracked-files[=]

 reveal untracked files; select between all,
normal, and no options. (By default, all)

 –pathspec-from-file

 read pathspec from file

 –pathspec-file-nul with –pathspec-from-file,
NUL characters are used to separate pathspec
elements.

Do you have an idea to enhance your skill in
configuration management and orchestration in
the DevOps process? Join our Ansible training.

GITHUB Salary

Git help –all View Every
Command That Is Possible
Use the help –all command to see a list of all
available commands. Some of them are given here:

Main porcelain commands

add: Add contents of the file to the index.
am: Installing multiple patches from a
mailbox.
archive: Make a file archive from a specified
tree.

https://www.softlogicsys.in/ansible-training-in-chennai/

Ancillary Commands / Manipulators

config: Obtain and adjust global or repository
options.
fast-export: Git data exporter.
fast-import: Fast Git data importers’ backend

Ancillary Commands / Interrogators

annotate: Add commit information to file lines
by annotation.
blame: Display the author and revision number
of each line in a file.
bugreport: Gather data so that the user can
report a bug.
count-objects: Counts the number of
unpacked objects and how much disk space
they take up.

Interacting with Others

archimport: Using Git, import a GNU Arch
repository
cvsexportcommit: One commit can be
exported to a CVS checkout.
cvsimport: Extract your data from a different
SCM that people detest.

Low-level Commands / Manipulators

apply: Put a patch on the index or the files.
checkout-index: Transfer files to the working
tree from the index.
commit-graph: Create and validate commit-
graph files for Git.
commit-tree: Make a fresh commit object.

Low-level Commands / Interrogators

cat-file: Give repository object content, type,
and size information.
cherry: Locate commits that haven’t been
updated for upstream diff files.
diff-files: Compares the working tree’s files
with the diff-index of the index
diff-index: A tree’s comparison with the

working tree or index

Low-level Commands / Syncing Repositories

daemon: Abasic Git repository server
fetch-pack: Get the absent items from a
different repository.
http-backend: Git implemented on the server
side via HTTP

Low-level Commands / Internal Helpers

check-attr: Show details about gitattributes.
check-ignore: Track down gitignore/exclude
files.
check-mailmap: Display contacts’ canonical
names and email addresses.
check-ref-format: Ensures a reference name
is correctly formulated.

External commands

askyesno
credential-helper-selector
flow
lfs

Git Branch

A branch in Git is a fresh, independent version of the
main repository.

You can work on other project components
without affecting the main branch by using
branches.
A branch can be combined with the main
project after the work is finished.
Even switching between branches and working
on distinct projects is possible without causing
conflicts.
Git branching is incredibly quick and light.

New Git Branch

Update to index.html:

While working in our private repository, we aim to

avoid interfering with or potentially damaging the
main project. Thus, we make a fresh branch:

git branch hello-world-images

We have now made a “hello world-images” branch.

Let’s make sure that the new branch has been
created:

git branch

 hello-world-images

* master

The * next to master indicates that we are now on
the “hello-world-images” branch, even though we
can see the new branch with that name.

The command to check out a branch is checkout.
Changing our focus from the active branch to the
one indicated by the command’s completion:

Example

git checkout hello-world-images

Switched to branch ‘hello-world-images’

We have now relocated our workplace to the new
branch from the master branch.

Launch your preferred editor and make some
adjustments.

Now we updated the index.html file with the
following code and added an image
(img_hello_world.jpg) to the working folder:

<!DOCTYPE html>

<html>

<head>

Within the working directory, we have inserted a
new file and modified an existing one (same
directory as the main branch). Check the current
branch’s status now:

git status

On branch hello-world-images

Changes not staged for commit:

 (use “git add …” to update what will be
committed.)

<title>Hello World!</title>

<link rel=”stylesheet”
href=”bluestyle.css”>

</head>

<body>

<h1>Hello world!</h1>

<div><img src=”img_hello_world.jpg”
alt=”Hello World from Space”

style=”width:100%;max-width:960px”>

</div>

<p>This is the first file in my new Git
Repo.</p>

<p>A new line in our file!</p>

</body>

</html>

 (use “git restore …” to discard changes in the
working directory)

 modified: index.html

Untracked files:

 (use “git add …” to include in what will be
committed.)

 img_hello_world.jpg

No changes added to commit (use “git add”
and/or “git commit -a”)

Let’s review what transpires in this example:

Our index.html has changed; however, the file
is not yet ready for commit.
There is no tracking for img_hello_world.jpg.

Therefore, we must add the following two files to this
branch’s staging environment:

git add –all

When you use –all rather than specific filenames, all
altered files—new, modified, and deleted—will be
staged.

Verify the branch’s status:

git status

On branch hello-world-images

Changes to be committed:

 (use “git restore –staged …” to unstage)

 new file: img_hello_world.jpg

 modified: index.html

With our adjustments, we are content. Thus, we’re
going to add these to the branch:

git commit -m “Added image to Hello World”

[hello-world-images 0312c55] Added image to
Hello World

2 files changed, 1 insertion(+)

create mode 100644 img_hello_world.jpg

There is a new branch that is distinct from the
master branch at this time.

Switching Between Branches

It’s time to go through the files in the current
directory since we uploaded an image to this
branch:

ls

README.md bluestyle.css img_hello_world.jpg
index.html

The newly created file, img_hello_world.jpg, is
visible, and upon opening the HTML file, we can
observe that the coding has been modified. All is in
its proper place.

git checkout master

Switched to branch ‘master’

This branch does not contain the updated picture.
The files in the current directory are once again
listed:

ls

README.md bluestyle.css index.html

The file img_hello_world.jpg is missing! Additionally,
we can observe that the code has been restored to
its original state by opening the html file.

Emergency Branch
Since hello-world images are still being worked on,
we need not to tamper with them directly or with
the master.

To handle the situation, we thus establish a new
branch:

git checkout -b emergency-fix

Switched to a new branch ’emergency-fix’

We have since switched to a new branch that we
made from master. Without interfering with the
other branches, we may securely correct the issue.

Now the status:

<!DOCTYPE html>

<html>

<head>

<title>Hello World!</title>

<link rel=”stylesheet”

href=”bluestyle.css”>

</head>

<body>

<h1>Hello world!</h1>

<p>This is the first file in my new Git
Repo.</p>

<p>This line is here to show how

merging works.</p>

</body>

</html>

git status

On branch emergency-fix

Changes not staged for commit:

 (use “git add …” to update what will be
committed)

 (use “git restore …” to discard changes in working
directory)

 modified: index.html

no changes added to commit (use “git add” and/or
“git commit -a”)

File staging and commit

git add index.html

git commit -m “updated index.html with
emergency fix”

[emergency-fix dfa79db] updated index.html with
emergency fix

 1 file changed, 1 insertion(+), 1 deletion(-)

Do you want to become a DevOps engineer with
AWS skills? Join our AWS DevOps course.

GIT Training

Git Branch Merges

Let’s combine the master and emergency-fix
branches now that the emergency fix is available.

We must switch to the master branch first.

git checkout master

Switched to branch ‘master’

We are now merging the emergency fix with the
main branch:

https://www.softlogicsys.in/aws-devops-engineer-course/
https://www.softlogicsys.in/git-training/

git merge emergency-fix

Updating 09f4acd..dfa79db

Fast-forward

 index.html | 2 +-

 1 file changed, 1 insertion(+), 1 deletion(-)

Git interprets this as a continuation of master, as
the emergency-fix branch was taken straight from
master and no additional modifications were
added to master throughout our work. As a result, it
can “Fast-forward” by simply pointing to the same
commit for emergency repair and master.

We may remove emergency-fix since it is no longer
required because master and emergency-fix are
now nearly identical:

git branch -d emergency-fix

Deleted branch emergency-fix (was dfa79db).

Merge Conflict

We may now switch to hello-world images and
continue our work there. To make it appear, add
another image file (img_hello_git.jpg) and modify
index.html.

git checkout hello-world-images

Switched to branch ‘hello-world-images’

Example

<!DOCTYPE html>

<html>

<head>

<title>Hello World!</title>

We can stage and commit for this branch as we
have completed our work on it:

git add –all

git commit -m “added new image”

[hello-world-images 1f1584e] added new image

 2 files changed, 1 insertion(+)

 create mode 100644 img_hello_git.jpg

<link rel=”stylesheet”

href=”bluestyle.css”>

</head>

<body>

<h1>Hello world!</h1>

<div><img src=”img_hello_world.jpg”
alt=”Hello World from Space”
style=”width:100%;max-width:960px”>

</div>

<p>This is the first file in my new Git
Repo.</p>

<p>A new line in our file!</p>

<div><img src=”img_hello_git.jpg”
alt=”Hello Git” style=”width:100%;max-

width:640px”></div>

</body>

</html>

Both branches’ index.html files have been modified.
The hello-world images can now be merged into
the master.

git checkout master

git merge hello-world-images

Auto-merging index.html

CONFLICT (content): Merge conflict in index.html

The automatic merge failed; resolve disputes
before committing the outcome.

Due to a conflict between the versions of index.html,
the merging attempt was unsuccessful.

git status

On branch master

You have unmerged paths.

 (fix conflicts and run “git commit”)

 (use “git merge –abort” to abort the merge)

Changes to be committed:

 new file: img_hello_git.jpg

 new file: img_hello_world.jpg

Unmerged paths:

 (use “git add …” to mark resolution)

 both modified: index.html

This demonstrates that although there is a conflict
in index.html, the image files are prepared and in a
staged state for commit.

Thus, we must resolve that conflict. Use our editor to
open the file:

<!DOCTYPE html>

<html>

<head>

<title>Hello World!</title>

<link rel=”stylesheet”

href=”bluestyle.css”>

</head>

<body>

<h1>Hello world!</h1>

<div><img src=”img_hello_world.jpg”
alt=”Hello World from Space”

style=”width:100%;max-width:960px”>
</div>

<p>This is the first file in my new Git
Repo.</p>

<<<<<<< HEAD

<p>This line is here to show how

merging works.</p>

=======

<p>A new line in our file!</p>

<div><img src=”img_hello_git.jpg”
alt=”Hello Git” style=”width:100%;max-
width:640px”></div>

We can view the variations between the versions
and make any necessary edits:

>>>>>>> hello-world-images

</body>

</html>

<!DOCTYPE html>

<html>

<head>

<title>Hello World!</title>

<link rel=”stylesheet”
href=”bluestyle.css”>

</head>

<body>

<h1>Hello world!</h1>

<div><img src=”img_hello_world.jpg”
alt=”Hello World from Space”

style=”width:100%;max-width:960px”>
</div>

<p>This is the first file in my new Git
Repo.</p>

<p>This line is here to show how

merging works.</p>

We can now stage index.html and evaluate the
situation:

git add index.html

git status

On branch master

All conflicts fixed but you are still merging.

 (use “git commit” to conclude merge)

Changes to be committed:

 new file: img_hello_git.jpg

 new file: img_hello_world.jpg

 modified: index.html

With the problem fixed, we can use commit to finish
the merging:

Example:

git commit -m “merged with hello-world-images
after fixing conflicts”

[master e0b6038] merged with hello-world-images
after fixing conflicts

And remove the branch called hello-world-images:

git branch -d hello-world-images

Deleted branch hello-world-images (was 1f1584e).

<div><img src=”img_hello_git.jpg”
alt=”Hello Git” style=”width:100%;max-
width:640px”></div>

</body>

</html>

You now know more about how branching and
merging operate. Are you fresher to kick-start your
career? Explore a wide range of software course
options and begin your learning journey to reach
your dream destination.

Conclusion

We covered the essential concepts of Git with
examples in this Git tutorial and we hope this would
be useful for you to get started on your DevOps
journey. Explore a career in DevOps with our Git
training in Chennai.

Share on your Social
Media

Softlogic Academy

Softlogic Systems
KK Nagar [Corporate Office]

No.10, PT Rajan Salai, K.K. Nagar, Chennai
– 600 078.
Landmark: Karnataka Bank Building
Phone: +91 86818 84318
Email: enquiry@softlogicsys.in
Map: Google Maps Link

OMR

No. E1-A10, RTS Food Street
92, Rajiv Gandhi Salai (OMR),
Navalur, Chennai - 600 130.
Landmark: Adj. to AGS Cinemas

Navigation

Important Links

About Us

Blog Posts

Careers

Contact

Placement Training

Corporate Training

Hire With Us

Job Seekers

SLA’s Recently Placed Students

Reviews

Sitemap

Disclaimer

Privacy Policy

Terms and Conditions

https://www.softlogicsys.in/all%20courses/
https://www.softlogicsys.in/all%20courses/
https://www.softlogicsys.in/git-training-in-chennai/
https://www.softlogicsys.in/git-training-in-chennai/
https://www.facebook.com/sharer.php?u=https%3A%2F%2Fwww.softlogicsys.in%2Fgit-tutorial-for-beginners%2F&picture=https%3A%2F%2Fwww.softlogicsys.in%2Fwp-content%2Fuploads%2F2024%2F09%2FGit-Tutorial-22.jpg&title=Git%20Tutorial%20for%20beginners
https://x.com/share?text=Git%20Tutorial%20for%20beginners&url=https%3A%2F%2Fwww.softlogicsys.in%2Fgit-tutorial-for-beginners%2F
https://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fwww.softlogicsys.in%2Fgit-tutorial-for-beginners%2F&title=Git%20Tutorial%20for%20beginners
https://api.whatsapp.com/send?text=*Git%20Tutorial%20for%20beginners*+https%3A%2F%2Fwww.softlogicsys.in%2Fgit-tutorial-for-beginners%2F
https://pinterest.com/pin/create/button/?url=https%3A%2F%2Fwww.softlogicsys.in%2Fgit-tutorial-for-beginners%2F&media=https%3A%2F%2Fwww.softlogicsys.in%2Fwp-content%2Fuploads%2F2024%2F09%2FGit-Tutorial-22.jpg
https://t.me/share/url?url=https%3A%2F%2Fwww.softlogicsys.in%2Fgit-tutorial-for-beginners%2F&text=Git%20Tutorial%20for%20beginners
tel:+918681884318
https://maps.app.goo.gl/H5GK2EjzevzUBMnA7
https://www.softlogicsys.in/about-us/
https://www.softlogicsys.in/blog/
https://www.softlogicsys.in/careers/
https://www.softlogicsys.in/contact/
https://www.softlogicsys.in/placement-training-institute-in-chennai/
https://www.softlogicsys.in/corporate-training/
https://www.softlogicsys.in/hire-with-us/
https://www.softlogicsys.in/submit-your-cv/
https://www.softlogicsys.in/placed-students-list/
https://www.softlogicsys.in/reviews/
https://www.softlogicsys.in/sitemap.xml
https://www.softlogicsys.in/disclaimer/
https://www.softlogicsys.in/privacy-policy/
https://www.softlogicsys.in/terms-and-conditions/

Phone: +91 89256 88858
Email: info@softlogicsys.in
Map: Google Maps Link

Courses Social Media Links

Review Sources

Python

Software Testing

Full Stack Developer

Java

Power BI

Clinical SAS

Data Science

Embedded

Cloud Computing

Hardware and Networking

VBA Macros

Mobile App Development

DevOps

Google

Trustpilot

Glassdoor

Mouthshut

Sulekha

Justdial

Ambitionbox

Indeed

Software Suggest

Sitejabber

Copyright © 2024 - Softlogic
Systems. All Rights Reserved

SLA™ is a trademark of Softlogic Systems, Chennai.
Unauthorised use prohibited.

tel:+918925688858
https://maps.app.goo.gl/s67uxUtcFVbXDMpz6
https://www.softlogicsys.in/python-training-in-chennai/
https://www.softlogicsys.in/software-testing-training-in-chennai/
https://www.softlogicsys.in/full-stack-developer-training-in-chennai/
https://www.softlogicsys.in/java-training-in-chennai/
https://www.softlogicsys.in/power-bi-training-in-chennai/
https://www.softlogicsys.in/clinical-sas-training-in-chennai/
https://www.softlogicsys.in/datascience-training-in-chennai/
https://www.softlogicsys.in/embedded-training-in-chennai/
https://www.softlogicsys.in/cloud-computing-training-in-chennai/
https://www.softlogicsys.in/hardware-networking-training-in-chennai/
https://www.softlogicsys.in/vba-macros-training-in-chennai/
https://www.softlogicsys.in/mobile-application-development-training-in-chennai/
https://www.softlogicsys.in/devops-training-in-chennai/
https://www.google.com/search?q=slainstitute&rlz=1C1CHBF_enIN1034IN1034&oq=slainstitute&aqs=chrome..69i57j69i60l4j69i65l3.6143j0j1&sourceid=chrome&ie=UTF-8#lrd=0x3a52678b6ec7b719:0xc0cf6f565e5669c7,1,,,,
https://www.trustpilot.com/review/softlogicsys.in
https://www.glassdoor.co.in/Reviews/Softlogic-Systems-Reviews-E520130.htm/
https://www.mouthshut.com/product-reviews/Softlogic-Systems-Pvt-Ltd-reviews-925594128
https://www.sulekha.com/softlogic-systems-pvt-ltd-kk-nagar-chennai-10331127-contact-address
https://www.justdial.com/Chennai/Softlogic-Systems-Pvt-Ltd-Near-Sivan-Park-K-K-Nagar/044PXX44-XX44-111208140938-Z3M3_BZDET
https://www.ambitionbox.com/reviews/softlogic-systems-reviews
https://in.indeed.com/cmp/Softlogic-Systems/reviews
https://www.softwaresuggest.com/company/softlogic-systems
https://www.sitejabber.com/reviews/softlogicsys.in

