™

EASYWAYTOIT JOB

Share on your Social Media m m a

MERN Stack Tutorial for Web
Development Aspirants

Published On: October 14, 2024

MERN Stack Tutorial for Web Development
Aspirants

There is a growing need for competent MERN stack developers.

Industry reports state that reputable companies need developers

who understand every MERN (MongoDB, Express.JS, React.Js, and
Node.JS) component. Gain expertise with the fundamentals in

this MERN Stack tutorial designed for web development aspirants.

Know the fundamentals of MERN Stack with our JavaScript
course in Chennai.

<Downloud MERN Stack Tutorial PDF>

Introduction to MERN Stack

MERN Stack is a set of strong and capable technologies used to
create scalable master online applications with front-end, back-
end, and database elements. We cover the following in this MERN
Stack tutorial:

e Overview of MERN Stack

e MERN Stack Architecture

e Primary Elements of MERN Stack

e Getting Started with MERN Stack

e Creating Components for MERN

e Connecting the front end to the back end
e Advantages of MERN Stack

Overview of MERN Stack

Generally, JavaScript creates full-stack web apps more quickly
and easily. A user-friendly full-stack JavaScript framework for
creating dynamic websites and applications is called MERN
Stack. There are four primary technologies, or components, that
make MERN Stack:

Featured

Articles

Ny Want to know
kXX moreabout
becoming an

expertinIT?

Click Here to Ge
Started

100% |
Placement cé‘n“TTEZ
Assurance

Related Cour

SLA

o MERN Stack Tra
OMR

o MERN Stack Training in
Chennai

MERN Stack Online
Training

©

Related Posts

MERN Stack Tutorial for
Web Development
Aspirants

Published On: October 14, 2024

MERN Stack Tutorial for Web

https://www.softlogicsys.in/python-full-stack-developer-course/
https://www.softlogicsys.in/python-full-stack-developer-course/
https://www.softlogicsys.in/python-full-stack-developer-course/
https://www.softlogicsys.in/python-full-stack-developer-course/
https://www.softlogicsys.in/java-full-stack-developer-course/
https://www.softlogicsys.in/java-full-stack-developer-course/
https://www.softlogicsys.in/java-full-stack-developer-course/
https://www.softlogicsys.in/data-science-full-stack-course/
https://www.softlogicsys.in/business-intelligence-and-data-analytics-course/
https://www.softlogicsys.in/software-testing-and-quality-assurance-course/
https://www.softlogicsys.in/mean-full-stack-developer-course/
https://www.softlogicsys.in/mern-full-stack-developer-course/
https://www.softlogicsys.in/dot-net-fullstack-course/
https://www.softlogicsys.in/aws-devops-engineer-course/
https://www.softlogicsys.in/azure-devops-training-in-chennai/
https://www.softlogicsys.in/placement-training-institute-in-chennai/
https://www.softlogicsys.in/placement-training-institute-in-chennai/
https://www.softlogicsys.in/reviews/
https://www.softlogicsys.in/placed-students-list/
https://www.softlogicsys.in/placed-students-list/
https://www.softlogicsys.in/corporate-training/
https://www.softlogicsys.in/hire-with-us/
https://www.softlogicsys.in/hire-with-us/
https://www.softlogicsys.in/hire-with-us/
https://www.softlogicsys.in/hire-with-us/
https://www.softlogicsys.in/submit-your-cv/
https://www.softlogicsys.in/careers/
https://www.softlogicsys.in/careers/
https://www.softlogicsys.in/careers/
https://www.softlogicsys.in/careers/
https://www.facebook.com/sharer.php?u=https%3A%2F%2Fwww.softlogicsys.in%2Fmern-stack-tutorial-for-web-development-aspirants%2F&picture=&title=MERN%20Stack%20Tutorial%20for%20Web%20Development%20Aspirants
https://x.com/share?text=MERN%20Stack%20Tutorial%20for%20Web%20Development%20Aspirants&url=https%3A%2F%2Fwww.softlogicsys.in%2Fmern-stack-tutorial-for-web-development-aspirants%2F
https://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fwww.softlogicsys.in%2Fmern-stack-tutorial-for-web-development-aspirants%2F&title=MERN%20Stack%20Tutorial%20for%20Web%20Development%20Aspirants
https://api.whatsapp.com/send?text=*MERN%20Stack%20Tutorial%20for%20Web%20Development%20Aspirants*+https%3A%2F%2Fwww.softlogicsys.in%2Fmern-stack-tutorial-for-web-development-aspirants%2F
https://pinterest.com/pin/create/button/?url=https%3A%2F%2Fwww.softlogicsys.in%2Fmern-stack-tutorial-for-web-development-aspirants%2F&media=
https://t.me/share/url?url=https%3A%2F%2Fwww.softlogicsys.in%2Fmern-stack-tutorial-for-web-development-aspirants%2F&text=MERN%20Stack%20Tutorial%20for%20Web%20Development%20Aspirants
https://www.softlogicsys.in/javascript-training-in-chennai/
https://www.softlogicsys.in/javascript-training-in-chennai/
https://www.softlogicsys.in/javascript-training-in-chennai/
https://www.softlogicsys.in/javascript-training-in-chennai/
https://www.softlogicsys.in/javascript-training-in-chennai/
https://www.softlogicsys.in/javascript-training-in-chennai/
https://www.softlogicsys.in/mern-stack-training-in-omr/
https://www.softlogicsys.in/mern-stack-training-in-omr/
https://www.softlogicsys.in/mernstack-training-in-chennai/
https://www.softlogicsys.in/mernstack-training-in-chennai/
https://www.softlogicsys.in/mern-stack-online-training/
https://www.softlogicsys.in/mern-stack-online-training/
https://www.softlogicsys.in/mern-stack-online-training/
https://www.softlogicsys.in/mern-stack-tutorial-for-web-development-aspirants/
https://www.softlogicsys.in/mern-stack-tutorial-for-web-development-aspirants/
tel:+918681884318
https://api.whatsapp.com/send/?phone=918681884318&text=Hi+I+am+looking+for+more+information+on+your+training+courses&type=phone_number

e M stands for MongoDB, a NoSQL (non-structured query
language) database system for creating document
databases.

o E, orExpress, is used for developing the Node.js web
framework

¢ R, orReact, is mostly used to create client-side JavaScript
framework

¢ Nisanacronym for “node.js,” to develop the top JavaScript
web server.

These four technologies all contribute significantly to giving
developers an end-to-end framework. In the process of creating
web apps, even these four technologies are crucial. Hone your
skills with our Angular.JS training in Chennai.

MERN Stack Architecture

The three primary layers of MERN's three-tier architecture
scheme are:

e Web as front-end tier
e Server as the middle tier
e Database as backend tier

Web Layer of Front-Tier

This tier, the top of the MERN stack, is mainly managed by
React,s. It is one of the most popular front-end JavaScript
libraries for online applications that can be downloaded for free.

e [tis well known for producing client-side dynamic
applications.

e React allows you to design complicated interfaces with a
single component.

e |t connects such complex interfaces to the data on the
backend server.

¢ It allows users to create large-scale web apps with ease
that refresh the page’s content without having a page
reload.

Server or Middle Tier

It is the logical step below the top layer and is mostly managed
by Express.js and Node.js, two elements of the MERN stack.

e One of the most popular JavaScript frameworks for backend
development is Express.js.

e It makes it considerably more straightforward for developers
to put up reliable web servers and APIs.

e It enhances the useful features of Node.js HTTP (HyperText
Transfer Protocol) objects.

Development Aspirants There is a
growing need for competent
MERN...

MERN Stack Developer

Salary in Chennai
Published On: October 14, 2024

Introduction A MERN Stack
Developer creates web
applications using MongoDB,
Express.js, React.js, and Node.js,
managing...

Tableau Developer

Salary in Chennai

Published On: October 12, 2024

Introduction A Tableau Developer
designs, develops, and maintains
dashboards and visualizations
using Tableau software. Key...

VMware Tutorial for
Cloud Computing

Aspirants
Published On: October 12, 2024

VMware Tutorial for Cloud
Computing Aspirants VMware
software allows you to run a
virtual machine...

https://www.softlogicsys.in/angularjs-training-in-chennai/
https://www.softlogicsys.in/mern-stack-tutorial-for-web-development-aspirants/
https://www.softlogicsys.in/mern-stack-developer-salary-in-chennai/
https://www.softlogicsys.in/mern-stack-developer-salary-in-chennai/
https://www.softlogicsys.in/mern-stack-developer-salary-in-chennai/
https://www.softlogicsys.in/mern-stack-developer-salary-in-chennai/
https://www.softlogicsys.in/tableau-developer-salary-in-chennai/
https://www.softlogicsys.in/tableau-developer-salary-in-chennai/
https://www.softlogicsys.in/tableau-developer-salary-in-chennai/
https://www.softlogicsys.in/tableau-developer-salary-in-chennai/
https://www.softlogicsys.in/vmware-tutorial-for-cloud-computing-aspirants/
https://www.softlogicsys.in/vmware-tutorial-for-cloud-computing-aspirants/
https://www.softlogicsys.in/vmware-tutorial-for-cloud-computing-aspirants/
https://www.softlogicsys.in/vmware-tutorial-for-cloud-computing-aspirants/

JavasScript is constantly used by Node.js. As a result, a computer
user can swiftly construct any kind of online service or mobile
application.

(MERN Stack Interview Questions)

Database Layer or Backend Tier

Mostly run by MongoDB, it is one of the most important tiers of the
MERN Stack.

e A database’s primary function is to store all of the data
associated with your application, such as user profiles,
comments, content, statistics, and other data.

e All of the data is mostly stored there for security reasons.

¢ It keeps an accurate record and typically gives the user
access to the data when needed.

e The data is primarily stored in the database.

e To ensure that the system can always recover the precise
data or information that the user originally requested, it
creates two or more replica files of the data.

¢ It suggests that the table-like relational database structure
is not the foundation of MongoDB.

It offers a completely different method for storing and retrieving
data. An open-source document-oriented database, MongoDB is
the most widely used NoSQL (also known as Non-Structured
Query Language) database.

A non-relational database that does not need a fixed schema or
appropriate relational tables to store the essential data in it is
commonly referred to as “NoSQL.”

Unlike relational databases, which store data in a structure
consisting of rows and columns, MongoDB stores data in a
distinct manner.

Enroll in our mobile app development course in Chennai for a
promising career.

Primary Elements of MERN Stack

Let’s explore the four technologies or elements that make up the
MERN Stack here:

MongoDB

A non-relational database that does not need a fixed schema or
appropriate relational tables to store the essential data in it is
commonly referred to as “NoSQL.”

https://www.softlogicsys.in/mern-stack-interview-questions-and-answers/
https://www.softlogicsys.in/mobile-application-development-training-in-chennai/

Unlike relational databases, which store data in a structure
consisting of rows and columns, MongoDB stores data in a
distinct manner.

The data is saved in a binary format called BSON, or Binary
JavasScript Object Notation; this format’s binary structure
encapsulates the length and type of the data, making it
significantly faster to parse.

e It suggests that the table-like relational database structure
is not the foundation of MongoDB.

o It offers a completely different method for storing and
retrieving data.

Features of MongoDB

¢ Schema-less Database: Ability to store many document
types in a single collection.

¢ Indexing: It makes it simple to retrieve the relevant data
from the data pool.

¢ Document-Oriented: MongoDB stores all of its data in
documents.

e Faster: MongoDB is significantly faster than other RDBMS.

¢ Scalability: Sharding helps make MongoDB more scalable.

« High Performance: Extremely high performance and data
persistence when compared to other databases.

¢ Replication and Highly Available: By generating several
copies of the data on many servers, MongoDB improves
data availability.

e Aggregation: The GROUPBY clause processes the grouped
data through many operations to obtain the unique or
calculated

¢ Simple Environment Setup: Installing MongoDB on a system
doesn't require much work.

Learn more through our MongoDB training in Chennai.

Express.JS

Express is a server-side framework for JavaScript that is used
with JS. It is among the top JavaScript frameworks for backend
development. It gives the developer a framework for building and
managing reliable servers. Explore more with our full-stack
developer course.

Express is used to rapidly and easily construct and design
mobile and web applications. Express facilitates the organization
of your application’s functionality using middleware and routing
for strong web servers.

https://www.softlogicsys.in/mongodb-training-in-chennai/
https://www.softlogicsys.in/full-stack-developer-training-in-chennai/
https://www.softlogicsys.in/full-stack-developer-training-in-chennai/

Important Features of Express.JS

e Quicker and easier.

e The environment setup for Express is extremely
straightforward.

e Express makes connecting to databases like MongoDB quite
simple.

e Express gives you the ability to specify your application’s
routes.

e Routing using the HTTP method and URL patterns

e Error handling middleware makes error handling simple.

e REST API (Representational State Transfer Application
Programming Interface) creation is simple.

e The two template engines that Express offers, EJS and Jade,
make it simple to integrate data into a website’s structure.

e enhanced speed and heightened security.

e Itis scalable and incredibly effective.

e Itis asynchronous and single-threaded.

e |t also boasts the largest Node.js community.

e It supports code reuse with its integrated router.

React.JS

One of the most widely used open-source JavaScript front-end
libraries for creating websites is called React. It is employed in the
creation of user interfaces, particularly for single-page web
applications. Learn more with our React.JS course in Chennai.

Features of React.JS

e Easytolearn asitis simple.
e Data binding and native approach.
e High-performing and testable.

Node.JS

JavasScript code can be executed outside of a browser using the
cross-platform JS server environment, which is available as an
open-source download. It is frequently used to create and
develop a wide range of backend services, including mobile and
web applications.

Features of Node.JS

e Scalable and fast

e Easy to learn and debug

e Real-time web app development

e Data streaming and caching benefits
¢ Object-oriented and event-driven

e Huge community.

https://www.softlogicsys.in/react-js-training-in-chennai/

Explore our Node.JS training in Chennai to learn back-end
development separately.

Getting Started with MERN Stack

You must complete the following tasks to get started:

¢ Install Node.js: Download and install the latest version of
Node.js or the LTS version.

¢ Installing a Code Editor: We'll be utilizing Visual Studio Code
for this tutorial.

Setting up the project

We can develop full-stack solutions with MERN. As a result, we will
be developing a MERN stack project to fully utilize its capabilities.

We will develop a front end and a back end for this project.

e React will be used for the front end.
e Node.js, Express, and MongoDB will be used for the back
end.

Both the front-end client and the back-end server will be called.

First, let's make a new directory called mern. Our client and server
folders will be located in this folder.

mkdir mern && cd mern

Next, make a folder called server for the back end. Next, we'll
initialize the package.json file through npm init.

mkdir server && cd server
npm init -y

We'll add a line to the package.json file so that we may use
ECMAScript Modules, the officially accepted standard format for
packaging JavaScript code for reuse.

“type” “module”,

The dependencies will also be installed.

npm install mongodb express cors

The previous command installs three distinct packages:

e The MongoDB database driver enables data manipulation
and database connections for your Node.js applications.

e Express is a Node.js web framework that will simplify our
development.

https://www.softlogicsys.in/node-js-training-in-chennai/

e Corsis a Node.js module that facilitates resource sharing
between origins.

The package.json file contains installed dependencies that we
can view. The packages and their versions ought to be
mentioned.

Following successful installation of dependencies, we create a file
named server.js and add the following code to it:

import express from “express”;
import cors from “cors”;
import records from “./routes/record.js”;
const PORT = process.env.PORT || 5050;
const app = express();
app.use(cors());
app.use(express.json());
app.use(“/record”, records);
app.listen(PORT, () => {
console.log(‘Server listening on port ${PORT}");

19k

Express and Cors are being imported here for usage. const
process.env = port.The port variable will be accessed by PORT
from the config.env file that we’ll make next.

If you are a serious job seeker, enroll in our MERN Stack job

seeker program.

< MERN Stack Course Syllabus>

Connecting to MongoDB Atlas

It's time to link the database and our server. The database that
we will utilize is MongoDB Atlas.

A cloud-based database service that offers strong data security
and dependability is called MongoDB Atlas.

You can use a portion of Atlas features and functionality with
MongoDB Atlas’s perpetually free tier cluster.

https://www.softlogicsys.in/mern-full-stack-developer-course/
https://www.softlogicsys.in/mern-full-stack-developer-course/
https://www.softlogicsys.in/mern-stack-course-syllabus/

e You should create a config.env file in the server directory
after obtaining the connection string.

e There, designate a new ATLAS_URI variable with the
connection string.

When you’re done, your file ought to resemble the one below.

e Put your database username, password, cluster name, and
project ID in place of <username>, <password>,
<clusterName>, and <projectid>.

ATLAS_URI=mongodb+srv.//<username>:<password>@<cluster>.
<projectld>.mongodb.net/employees?
retryWrites=true&w=majority

PORT=5050

Make a connection.s file and a folder called “db” beneath the
server directory. To connect to our database, we can add the
following code there:

import { MongoClient, ServerApiVersion } from “mongodb”;
const uri = process.env.ATLAS_URI || **;
const client = new MongoClient(uri, {
serverApi: {
version: ServerApiVersion.vi,
strict. true,
deprecationErrors: true,
/
b
try {
// Connect the client to the server
await client.connect();
await client.db(*admin”).command({ ping: 1});
console.log(

“Pinged your deployment. You successfully connected to
MongoDB!”

);

} catch(err) {

console.error(err);

/

let db = client.db(“employees”);

export default db;

Join our web design course for your promising career in web
development.

Server APl endpoints

Let’s create a routes folder and include record.js within it. Return
to the “server” directory and make the new file and directory
there:

cd ../server
mkdir routes
touch routes/record.js

The following lines of code will also be present in the
routes/record.,s file:

JavaScript

import express from “express”;

import db from “./db/connection.js”;

import { Objectld } from “mongodb”;

const router = express.Router();

router.get(”/", async (req, res) => {
let collection = await db.collection(“records”);
let results = await collection.find({}).toArray();
res.send(results).status(200);

b

router.get(“/id", async (req, res) => {
let collection = await db.collection(“records”);

let query = { _id: new Objectld(req.params.id) };

https://www.softlogicsys.in/web-development-course-syllabus/

let result = await collection.findOne(query);
if (Iresult) res.send(“Not found”).status(404);
else res.send(result).status(200);
b
router.post(“/”, async (req, res) => {
try {
let newDocument = {
name: req.body.name,
position: req.body.position,
level: req.body.level,
b
let collection = await db.collection(“records”);
let result = await collection.insertOne(newDocument);
res.send(result).status(204);
} catch (err) {
console.error(err);

res.status(500).send(“Error adding record”);

}
b
router.patch(“/:id”, async (req, res) => {
try {
const query = { _id: new Objectld(req.params.id) };
const updates = {
$set {
name: req.body.name,
position: req.body.position,

level: req.body.level,

}
k
let collection = await db.collection(“records”);
let result = await collection.updateOne(query, updates);
res.send(result).status(200);
} catch (err) {
console.error(err);

res.status(500).send(“Error updating record”);

}
b
router.delete(“/-id”, async (req, res) => {
try {
const query = { _id: new Objectld(req.params.id) };
const collection = db.collection(“records”);
let result = await collection.deleteOne(query);
res.send(result).status(200);
} cateh (err) {
console.error(err);

res.status(500).send(“Error deleting record”);

}
19k

export default router;

The following message will appear in your terminal as the
connection is established if you execute the application at this
stage. Observe that we are utilizing the environment variable
features that are pre-installed in the most recent Node.js
versions.

> node —env-file=config.env server

Pinged your deployment. You successfully connected to
MongoDB!

Server is running on port. 5050

That concludes the back end. We will now begin to work on the
front end.

Configuring the React application

Let’s configure this in a new terminal in the mern directory:
npm create vite@latest client — —template react
cd client
npm install
We will be utilizing a few extra dependencies in our app.
npm install -D tailwindcss postcss autoprefixer
npx tailwindcss init -p
JavaScript
/** @type {import(‘tailwindcss’).Config} */
export default {
content. [
“ [index.html”,
“ [src/**/* {js,ts,jsx tsx}",
L
theme: {
extend: {},
,
plugins: [],
/

The Tailwind directives must be added to the src/index.css file,
and everything else must be removed.

@tailwind base;
@tailwind components;

@tailwind utilities;

Lastly, react-router-dom will be installed.
npm install -D react-router-dom

Tailwind is a utility-first CSS framework that uses preset class
names to add CSS styles. Furthermore, React Router gives React
client-side page routing! Gain expertise with our web
development course syllabus.

Configuring the React Router

import * as React from “react”;
import * as ReactDOM from “react-dom/client”;
import {
createBrowserRouter,
RouterProvider,
} from “react-router-dom”;
import App from “./App”;
import Record from “./components/Record”;
import Recordlist from “.,/components/RecordlList”;
import “./index.css”;
const router = createBrowserRouter([
{
path: “/*,
element: <App />,
children: [
{
path: /",

element. <RecordlList />,

https://www.softlogicsys.in/web-development-course-syllabus/
https://www.softlogicsys.in/web-development-course-syllabus/

path: “/edit/id”,
element. <App />,
children: [

{

path: “/edit/:id”,

element. <Record />,

path: “/create”,
element. <App />,
children: [

{

path: “/create”,

element. <Record />,

1
ReactDOM.createRoot(document.getElementByld(“root”)).render(
<React.StrictMode>
<RouterProvider router={router} />
</React.StrictMode>
);
Our Ul is kept in sync with the URL by using RouterProvider, and we

have configured our application page routes in the router
variable.

e RoutingProvider facilitates smooth transitions between
components.

e In essence, rather than refreshing or reloading the entire
page, it will only reload or refresh the component that needs
to be modified.

e React Router is not required, but it is essential if you want
your application to be responsive.

Learn the fundamentals of web development with our web
development training in Chennai.

<MERN Stack Developer Salary in Chennui>

Creating Components

Let's now create the elements that we specified in our routes.
Inside the src folder, make a components folder.

We'll add a new.js file to the components folder for every
component we make.

In this instance, Navbar.jsx, RecordList.jsx, and ModifyRecord.jsx
will be included.

mkdir src/components
cd src/components
touch Navbar.jsx Recordlist.js ModifyRecord.jsx

Navbar.jsx: The following code will be used in the navbar.js
component to create a navigation bar that will connect us to the
necessary components.

import { NavLink } from “react-router-dom?;
export default function Navbar() {
return (
<div>
<nav className="flex justify-between items-center mb-6">
<NavlLink to="/"> <img alt="MongoDB logo” className="h-10
inline”
src="https://d3cy9zhslanhfa.cloudfront.net/media/3800C044-
6298—4575-AO5D5C6B7623EE37/4B45DOEC—3482—4759—

82DA37D8EA07D229/webimage-8A27671A-8A53-45DC-
89D7BF8537FI5A0D.png”>

https://www.softlogicsys.in/web-development-training/
https://www.softlogicsys.in/web-development-training/
https://www.softlogicsys.in/mern-stack-developer-salary-in-chennai/

</NavLink>

<Navlink className="inline-flex items-center justify-center
whitespace-nowrap text-md font-medium ring-offset-
background transition-colors focus-visible:outline-none focus-
visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2
disabled.pointer-events-none disabled.opacity-50 border
border-input bg-background hover.bg-slate-100 h-9 rounded-
md px-3" to="/create”>

Create Employee
</NavlLink>
</nav>
</div>
);
}

RecordlList.jsx: The viewing component for our records will be the
code that follows. It will use the GET technique to retrieve every
record in our database.

import { useEffect, useState } from “react”;
import { Link } from “react-router-dom?;

const Record = (props) => (<tr className="border-b transition-
colors hover.bg-muted/50 data-[state=selected|-bg-muted”>

<td className="p-4 align-middle
[&has([role=checkbox])].pr-0">

{props.record.name}
</td>

<td className="p-4 align-middle
[&has([role=checkbox])].pr-0">

{props.record.position}
</td>

<td className="p-4 align-middle
[&has([role=checkbox])].pr-0">

{props.record.level}

</td>

<td className="p-4 align-middle
[&has([role=checkbox])].pr-0">

<div className="flex gap-2">
<Link

className="inline-flex items-center justify-center
whitespace-nowrap text-sm font-medium ring-offset-
background transition-colors focus-visible:outline-none focus-
visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2
disabled:pointer-events-none disabled:opacity-50 border
border-input bg-background hover.bg-slate-100 h-9 rounded-
md px-3"

to={"/edit/${props.record._id}}

Edit
</Link>
<button

className="inline-flex items-center justify-center
whitespace-nowrap text-sm font-medium ring-offset-
background transition-colors focus-visible:outline-none focus-
visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2
disabled.pointer-events-none disabled.opacity-50 border
border-input bg-background hover.bg-slate-100 hover.text-
accent-foreground h-9 rounded-md px-3"

color="red”

type="button”

oncClick={() => {
props.deleteRecord(props.record._id);

i}

Delete
</button>

</div>

</td>
</tr>
);
export default function RecordList() {
const [records, setRecords] = useState([]);
// This method fetches the records from the database.
usekffect(() => {
async function getRecords() {

const response = await
fetch("http://localhost.5050/record/’);

if (Iresponse.ok) {

const message = “An error occurred:
${response.statusText}

console.error(message);

return;
}
const records = await response.json();
setRecords(records);
}
getRecords();
return;

}, [records.length]);
// This method will delete a record
async function deleteRecord(id) {
await fetch(“http://localhost.5050/record/$ {id}, {
method: “DELETE",

19k

const newRecords = records.filter((el) => el._id I== id);

setRecords(newRecords);
}
function recordlist() {
return records.map((record) => {
return (
<Record
record={record}
deleteRecord={() => deleteRecord(record._id)}
key={record._id}
/>
);
b
}

return (

<>

<h3 className="text-lg font-semibold p-4">Employee
Records</h3>

<div className="border rounded-Ig overflow-hidden”>
<div className="relative w-full overflow-auto”>
<table className="w-full caption-bottom text-sm”>
<thead className="[&_tr]:border-b">

<tr className="border-b transition-colors hover.bg-
muted/50 data-[state=selected].bg-muted”>

<th className="h-12 px-4 text-left align-middle font-
medium text-muted-foreground [&has([role=checkbox])]-pr-
0!/)

Name
</th>

<th className="h-12 px-4 text-left align-middle font-
medium text-muted-foreground [&has([role=checkbox])].pr-

0”)
Position
</th>

<th className="h-12 px-4 text-left align-middle font-
medium text-muted-foreground [&has([role=checkbox])].pr-
ON}

Level
</th>

<th className="h-12 px-4 text-left align-middle font-
medium text-muted-foreground [&has([role=checkbox])].pr-
0”)

Action
</th>
</tr>
</thead>
<tbody className="[&_trlast-child].border-0">
{recordList()}
</tbody>
</table>
</div>
</div>
</>
)

Record.jsx: The code that follows will function as a form element
for adding or editing records. This part will send a command to
our server to either create or update.

import { useState, useEffect } from “react”;
import { useParams, useNavigate } from “react-router-dom”;

export default function Record() {

const [form, setForm] = useState({
name: “*,
position: *,
level.
b
const [isNew, setlsNew] = useState(true);
const params = useParams();
const navigate = useNavigate();
useEffect(() => {
async function fetchData() {
const id = params.id?.toString() Il undefined;
if(lid) return;
setisNew(false);
const response = await fetch(
http://localhost:5050/record/$ {params.id.toString ()}
);
if (fresponse.ok) {

const message = "An error has occurred:
${response.statusText}’

console.error(message);
return;
}
const record = await response.json();
if (Irecord) {
console.warn(‘Record with id ${id} not found);
navigate(“/”);

return;

setForm(record);
}
fetchData();
return;

}, [params.id, navigate]);
function updateForm(value) {
return setForm((prev) => {

return { ..prev, ..value };
b
}

async function onSubmit(e) {
e.preventDefault();
const person = { ..form };
try {
let response;
if (isNew) {
response = await fetch(“http://localhost.5050/record”, {
method: “POST”,
headers: {
“Content-Type” “application/json’,
}
body: JSON.stringify(person),
b
}else {

response = await
fetch("http://localhost.5050/record/$ {params.id};, {

method: “PATCH”,

headers: {
“Content-Type™ “application/json”,
}
body: JSON.stringify(person),
b
}

if (Iresponse.ok) {
throw new Error(CHTTP error! status: ${response.status});
}
} catch (error) {

console.error(*A problem occurred with your fetch operation:
\ error);

} finally {
setForm({ name: ", position: **, level: “" });

navigate(“/”);

!

return (

<>

<h3 className="text-Ig font-semibold p-4">Create/Update
Employee Record</h3>

<form
onSubmit={onSubmit}

className="border rounded-Ig overflow-hidden p-4"

<div className="grid grid-cols-1 gap-x-8 gap-y-10
border-b border-slate-900/10 pb-12 md:grid-cols-2">

<div>

<h2 className="text-base font-semibold leading-7 text-

slate-900">
Employee Info
</h2>
<p className="mt-1 text-sm leading-6 text-slate-600">

This information will be displayed publicly so be careful
what you

share.
</p>
</div>

<div className="grid max-w-2xl grid-cols-1 gap-x-6
gap-y-8 *>

<div className="sm:.col-span-4">
<label
htmlIFor="name”

className="block text-sm font-medium leading-6
text-slate-900"

Name
</label>
<div className="mt-2">

<div className="flex rounded-md shadow-sm ring-1
ring-inset ring-slate-300 focus-within:ring-2 focus-within:ring-
inset focus-within:ring-indigo-600 sm:max-w-md”>

<input
type="text”
name="name”
id="name”

className="block flex-1 border-0 bg-transparent
py-1.5 pl-1 text-slate-900 placeholder.text-slate-400 focus:ring-0
sm:text-sm sm:leading-6"

placeholder="First Last”
value={form.name}

onChange={(e) => updateForm({ name:
e.target.value })}

/>
</div>
</div>
</div>
<div className="sm:.col-span-4">
<label
htmlIFor="position”

className="block text-sm font-medium leading-6
text-slate-900"

Position
</label>
<div className="mt-2">
<div className="flex rounded-md shadow-sm ring-1
ring-inset ring-slate-300 focus-within:ring-2 focus-within:ring-
inset focus-within:ring-indigo-600 sm:max-w-md">
<input
type="text”
name="position”
id="position”

className="block flex-1 border-0 bg-transparent
py-1.5 pl-1 text-slate-900 placeholder.text-slate-400 focus:ring-0
sm:text-sm sm:leading-6"

placeholder="Developer Advocate”
value={form.position}

onChange={(e) => updateForm({ position:

e.target.value })}
/>
</div>
</div>
</div>
<div>
<fieldset className="mt-4">

<legend className="sr-only”>Position
Options</legend>

<div className="space-y-4 sm:flex sm:items-center
sm:space-x-10 sm:space-y-0">

<div className="flex items-center”>
<input
id="positionintern”
name="positionOptions”
type="radio”
value="Intern”

className="h-4 w-4 border-slate-300 text-slate-
600 focus:ring-slate-600 cursor-pointer”

checked={form.level === “Intern”}

onChange={(e) => updateForm({ level
e.target.value })}

/>
<label
htmiFor="positionintern”

className="ml-3 block text-sm font-medium
leading-6 text-slate-900 mr-4"

Intern

</label>

<input
id="positionJunior”
name="positionOptions”
type="radio”
value="Junior”

className="h-4 w-4 border-slate-300 text-slate-
600 focus:ring-slate-600 cursor-pointer”

checked={form.level === “Junior”}

onChange={(e) => updateForm({ level
e.target.value })}

/>
<label
htmliFor="positionJunior”

className="ml-3 block text-sm font-medium
leading-6 text-slate-900 mr-4"

Junior

</label>

<input
id="positionSenior”
name="positionOptions”
type="radio”
value="Senior”

className="h-4 w-4 border-slate-300 text-slate-
600 focus:ring-slate-600 cursor-pointer”

checked={form.level === “Senior”}

onChange={(e) => updateForm({ level:
e.target.value })}

/>

<label
htmlFor="positionSenior”

className="ml-3 block text-sm font-medium
leading-6 text-slate-900 mr-4"

Senior
</label>
</div>
</div>
</fieldset>
</div>
</div>
</div>
<input
type="submit”
value="Save Employee Record”

className="inline-flex items-center justify-center
whitespace-nowrap text-md font-medium ring-offset-
background transition-colors focus-visible:outline-none focus-
visible:ring-2 focus-visible:ring-ring focus-visible:ring-offset-2
disabled.pointer-events-none disabled.opacity-50 border
border-input bg-background hover.bg-slate-100 hover.text-
accent-foreground h-9 rounded-md px-3 cursor-pointer mt-4"

/>
</form>
</>
)/.
}
The following is now added to the src/App.jsx file.

import { Outlet } from “react-router-dom?”;

import Navbar from ”./components/Navbar”;
const App = () => {
return (
<div className="w-full p-6">
<Navbar />
<Outlet />
</div>
)
b
export default App

This is the primary element of our layout. The Outlet will accept
the children components we set in our routes in the main.jsx file
before, and our Navbar will always be at the top of every page.

Explore our MERN Stack course syllabus to get started on your

learning journey.

<MERN Stack Online Training>

Connecting the front end to the back end

The creation of the components is now complete. We also used
fetch to link our React app to the back end, which offers simpler
and more streamlined methods for handling http requests.

We added the following code to the onSubmit(e) block of
Record.jsx.

Fetch will either add a new record to the database or update an
existing record when a POST or PATCH request is made to the
URL.

async function onSubmit(e) {
e.preventDefault();
const person = { ..form };

try {

const response = await
fetch("http://localhost.5050/record${params.id ? “/"+params.id :

https://www.softlogicsys.in/mern-stack-course-syllabus/
https://www.softlogicsys.in/mern-stack-online-training/

P
method. ‘${params.id ? “PATCH”: “POST"},
headers: {
“Content-Type" “application/json”,
4
body: JSON.stringify(person),
b
if (Iresponse.ok) {
throw new Error("HTTP error! status: ${response.status});
}
} catch (error) {

console.error("A problem occurred with your fetch operation: *,
error);

} finally {
setForm({ name: **, position: *, level: “" });

navigate(“/”);

To load an existing record, if it exists, we also added the following
block of code to Record.jsx underneath the constructor block.

usekffect(() => {
async function fetchData() {
const id = params.id?.toString() Il undefined;
if(lid) return;
const response = await fetch(
‘http://localhost.:5050/record/$ {params.id.toString () }°
);

if (Iresponse.ok) {

const message = "An error has occurred.
${response.statusText}

console.error(message);
return;
}
const record = await response.json();
if (frecord) {
console.warn("Record with id ${id} not found’);
navigate(“/”);
return;

!

setForm(record);
}
fetchData();
return;
}, [params.id, navigate]);

The last file is RecordList.jsx. We will use fetch’s GET method to
retrieve records from the database because RecordlList.jsx
fetches the records from the database. The following lines of
code were added to RecordList.jsx above the RecordList()
function to accomplish this.

useEffect(() => {
async function getRecords() {
const response = await fetch("http://localhost.5050/record/");
if (Iresponse.ok) {
const message = An error occurred: ${response.statusText};
console.error(message);
return;

!

const records = await response.json();

setRecords(records);
}
getRecords();
return;
}, [records.length]);

Once everything has been shut off, take the following actions to
launch the app:

Ensure that the server application is still active. If not, use the
following command in the server directory to start it:

node —env-file=config.env server

Navigate to the client directory in a new terminal and type the
following command:

npm run dev
Now it is ready to add the records.
Output
0 MongoDB. Create Employee

Create/Update Employee Record

Employee Info Name

This information will be displayed publicly so be careful Eirsiilas

what you share.

Position

Developer Advocate

O Intern O Junior) Senior

Save Employee Record

Learn MongoDB separately in our MongoDB training in Chennai.

Advantages of MERN Stack

There are numerous benefits to the MERN stack, such as:

¢ Performance: The MERN stack is optimized for Node.js to
provide good performance.

 Scalability: The MERN stack makes it simple to scale existing
functionalities or add new ones.

https://www.softlogicsys.in/mongodb-training-in-chennai/

e Open source: There is no proprietary licensing associated
with the full MERN stack.

¢ Community support: There is a vibrant community for the
MERN stack that can assist with prompt problem-solving.

e Flexibility: The MERN stack can write code for servers and
browsers alike.

* Cost-effectiveness: Compared to alternative frameworks,
the MERN stack uses fewer resources.

o Architecture: The architecture of the MERN stack is simple
to maintain.

¢ MVC architecture: This design keeps business logic and
display details apart.

¢ Full stack development: Frontend and backend app
development are supported by the MERN stack.

Conclusion

We hope this MERN Stack tutorial will be helpful for beginners who
started learning web development. Hone your skills with our
MERN Stack training in Chennai.

Share on your Social Media m m a

Navigation
About Us
Blog Posts
Careers
Contact

Softlogic Academy

Placement Training

SOftlogic Systems Corporate Training

Hire With Us

KK Nagar [Corporate Office] Job Seekers

No.10, PT Rajan Salai, K.K. Nagar, Chennai - SLA’s Recently Placed Students
600 078.

. Reviews
Landmark: Karnataka Bank Building

Phone: +91 86818 84318 Sitemap
Email: enquiry@softlogicsys.in .

Uy) S Important Links
Map: Google Maps Link

Disclaimer

OMR , .
Privacy Policy

No. E1-AlO, RTS Food Street
92, Rajiv Gandhi Salai (OMR),
Navalur, Chennai - 600 130.

Terms and Conditions

https://www.softlogicsys.in/mernstack-training-in-chennai/
https://www.facebook.com/sharer.php?u=https%3A%2F%2Fwww.softlogicsys.in%2Fmern-stack-tutorial-for-web-development-aspirants%2F&picture=&title=MERN%20Stack%20Tutorial%20for%20Web%20Development%20Aspirants
https://x.com/share?text=MERN%20Stack%20Tutorial%20for%20Web%20Development%20Aspirants&url=https%3A%2F%2Fwww.softlogicsys.in%2Fmern-stack-tutorial-for-web-development-aspirants%2F
https://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fwww.softlogicsys.in%2Fmern-stack-tutorial-for-web-development-aspirants%2F&title=MERN%20Stack%20Tutorial%20for%20Web%20Development%20Aspirants
https://api.whatsapp.com/send?text=*MERN%20Stack%20Tutorial%20for%20Web%20Development%20Aspirants*+https%3A%2F%2Fwww.softlogicsys.in%2Fmern-stack-tutorial-for-web-development-aspirants%2F
https://pinterest.com/pin/create/button/?url=https%3A%2F%2Fwww.softlogicsys.in%2Fmern-stack-tutorial-for-web-development-aspirants%2F&media=
https://t.me/share/url?url=https%3A%2F%2Fwww.softlogicsys.in%2Fmern-stack-tutorial-for-web-development-aspirants%2F&text=MERN%20Stack%20Tutorial%20for%20Web%20Development%20Aspirants
tel:+918681884318
https://maps.app.goo.gl/H5GK2EjzevzUBMnA7
https://www.softlogicsys.in/about-us/
https://www.softlogicsys.in/blog/
https://www.softlogicsys.in/careers/
https://www.softlogicsys.in/contact/
https://www.softlogicsys.in/placement-training-institute-in-chennai/
https://www.softlogicsys.in/corporate-training/
https://www.softlogicsys.in/hire-with-us/
https://www.softlogicsys.in/submit-your-cv/
https://www.softlogicsys.in/placed-students-list/
https://www.softlogicsys.in/reviews/
https://www.softlogicsys.in/sitemap.xml
https://www.softlogicsys.in/disclaimer/
https://www.softlogicsys.in/privacy-policy/
https://www.softlogicsys.in/terms-and-conditions/

Landmark: Adj. to AGS Cinemas
Phone: +91 89256 88858

Email: info@softlogicsys.in
Map: Google Maps Link

Courses Social Media Links

Python

1 X in|

Software Testing

Full Stack Developer o
P Review Sources

Java
Google
Power BI

e Trustpilot
Clinical SAS

Data Science Glassdoor

Embedded Mouthshut
Cloud Computing Sulekha
Hardware and Networking Justdial

VBA Macros Ambitionbox

Mobile App D I t
obile App Developmen Indesd

DevOps
Software Suggest

Sitejabber

Copyright © 2024 - Softlogic Systems. AlISLA™ is a trademark of Softlogic Systems, Chennai.
Rights Reserved Unauthorised use prohibited.

tel:+918925688858
https://maps.app.goo.gl/s67uxUtcFVbXDMpz6
https://www.softlogicsys.in/python-training-in-chennai/
https://www.softlogicsys.in/software-testing-training-in-chennai/
https://www.softlogicsys.in/full-stack-developer-training-in-chennai/
https://www.softlogicsys.in/java-training-in-chennai/
https://www.softlogicsys.in/power-bi-training-in-chennai/
https://www.softlogicsys.in/clinical-sas-training-in-chennai/
https://www.softlogicsys.in/datascience-training-in-chennai/
https://www.softlogicsys.in/embedded-training-in-chennai/
https://www.softlogicsys.in/cloud-computing-training-in-chennai/
https://www.softlogicsys.in/hardware-networking-training-in-chennai/
https://www.softlogicsys.in/vba-macros-training-in-chennai/
https://www.softlogicsys.in/mobile-application-development-training-in-chennai/
https://www.softlogicsys.in/devops-training-in-chennai/
https://www.google.com/search?q=slainstitute&rlz=1C1CHBF_enIN1034IN1034&oq=slainstitute&aqs=chrome..69i57j69i60l4j69i65l3.6143j0j1&sourceid=chrome&ie=UTF-8#lrd=0x3a52678b6ec7b719:0xc0cf6f565e5669c7,1,,,,
https://www.trustpilot.com/review/softlogicsys.in
https://www.glassdoor.co.in/Reviews/Softlogic-Systems-Reviews-E520130.htm/
https://www.mouthshut.com/product-reviews/Softlogic-Systems-Pvt-Ltd-reviews-925594128
https://www.sulekha.com/softlogic-systems-pvt-ltd-kk-nagar-chennai-10331127-contact-address
https://www.justdial.com/Chennai/Softlogic-Systems-Pvt-Ltd-Near-Sivan-Park-K-K-Nagar/044PXX44-XX44-111208140938-Z3M3_BZDET
https://www.ambitionbox.com/reviews/softlogic-systems-reviews
https://in.indeed.com/cmp/Softlogic-Systems/reviews
https://www.softwaresuggest.com/company/softlogic-systems
https://www.sitejabber.com/reviews/softlogicsys.in

